
Self-Stabilizing spanning tree

1 Algorithm

Consider a graph where the nodes {p0, . . . , pn−1} represents a set of n processes. Two nodes are connected if
the corresponding processes can communicate. The node p0 is a distinguished process, and is referred to as
the root. Process pi communicates with its neighbour pj by writing to a shared register rij and reading from
rji. We say that the process pi owns the registers in which pi writes. That is, pi owns rij for all neighbours pj
of pi. Each register rij comprises two fields. The field rij .dis holds an integer value representing the distance
from the root p0 to pi. This integer value is bounded by some large constant K, and any assignment of a
larger value to the distance field results in the assignment of K. The field rij .parent holds a binary value: if
pi considers that pj is a parent, then rij = 1; otherwise rij = 0.

Finally, each process pi holds the following local variables: for each neighbour m, the variable lrmi is of
the same type as rmi, and is used to store values read from that register; an integer-valued variable dist; a
boolean variable F .

It is assumed that each process pi knows the list Ni of its neighbours, and that this list is ordered once
and for all. Alg. 1 shows the pseudo-code of the spanning tree construction algorithm. Note that, the lines
“for each j ∈ Ni” mean that we take the successive neighbours of pi in the predefined order.

Algorithm 1: Self-stabilizing spanning tree construction
1 case Node p0
2 while true do
3 foreach j ∈ N0 do
4 rij .(parent, dis)← (0, 0)
5 end
6 end
7 case Node pi 6= p0
8 while true do
9 foreach j ∈ Ni do

10 lrmi ← read(rmi)
11 end
12 F ← false
13 dist← 1 + min{lrmi.dis, m ∈ Ni}
14 foreach j ∈ Ni do
15 if F = false and lrji.dis = dist− 1 then
16 rij .(parent, dis)← (1, dist)
17 F ← true

18 else
19 rij .(parent, dis)← (0, dist)

20 end
21 end

Question 1. Consider a ring of n = 4 processes. Assume that, initially, all processes are in the same state,
and the registers contain the same values. Show that, if p0 executes the same code as the non-root processes,
then it is possible to define an ordering of neighbours for each process, and an execution such that: (i) every
process takes steps infinitely many times, (ii) the system does not converge. (Hint: use the fact that opposite
nodes “sees the same thing”)



2

2 Solution

2.1 Answer 1

An easy answer (that I have not planned) stems from the fact that we consider a particular algorithm.
Indeed, if the root executes the same code as the other processes, then the distance fields in the registers
will keep increasing until it reaches the maximum value (staying there hereafter).

2.2 Answer 2

Another answer allows to show that there is no deterministic self-stabilizing algorithm which computes a
spanning tree if every process executes the same code. Indeed, start from a configuration C0 in which all
processes are in the same state, and all registers contains the same value. Let a, b, c, d be the processes in the
ring (say counterclockwise). Consider the schedule S = (acbd)ω, that is, each time a process takes a step,
the diametrically opposite process then takes a step.

Focus for example on the beginning of the execution. In the configuration C0, every process sees the
same thing (the registers around him contains the same values) as the diametrically opposite process. Thus,
if activating the process a puts it in some state, then activating the process c right after puts c in exactly
the same state. By continuing this strategy, every process takes infinitely many steps, and infinitely often we
reach a configuration in which every process sees exactly the same thing as the opposite process (a symmetric
configuration). This prevents the computation of a spanning tree since otherwise, we would get infinitely
often a spanning tree with two roots. This argument can be generalized to show the impossibility of spanning
tree with uniform algorithm in case of ring of processes of size not a prime number.

This kind of symmetry argument is ubiquitious in distributed computing. It says that, if the environment
(the scheduler here) can maintain a form of symmetry in the system infinitely often, then one cannot solve
any problem requiring a form of symmetry breaking (e.g. leader election, spanning tree, mutual exclusion,
enumeration, etc.). Also, it is not limited to impossibility results in self-stabilization.

It is also interesting to find how we can circumvent this argument. The idea is that we must assume
something on the environment which allows the possibility of symmetry breaking. For example, restricting
to the case where the number of processes in the ring is a prime number, or considering stochastic scheduler
(selecting the next process to activate in a random manner), and so on.


