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1 Broadcast (14 points)

1.1 Question 1 (9 points)

State the interface (properties and specification in terms of indications and requests), and implementation of
a Causal Total Order Broadcast (CTOB) algorithm, i.e., a broadcast algorithm that satisfies both causality
and total-order. Furthermore, explain why your implementation solves CTOB.
Hint: You can assume that you have access to a procedure that sorts messages deterministically and which
respects the causal order among messages. You can assume to have access to any abstraction, except for Total
Order Broadcast or CTOB itself.

Answer:
Properties: (2 points)

CTOB1: Validity: If a correct process p broadcasts a message m, then p eventually delivers m.
CTOB2: No duplication: No message is delivered more than once.
CTOB3: No creation: If a process delivers a message m with sender p, then m was previously

broadcast by process p.
CTOB4: Uniform Agreement: If a message m is delivered by some process, then m is eventually

delivered by every correct process.
CTOB5: Causal order: If any process pi delivers a message m′, then pi must have delivered

every message m such that m→m′.
CTOB6: Total order: Let m and m′ be any two messages. Let pi be any process that delivers

m without having delivered m′. Then no process delivers m′ before m.

Specification: (1 point)
Module:

Name: CausalTotalOrderBroadcast, instance ctob.

Events:
Request: 〈ctobBroadcast |m〉 : Broadcasts a message m to all processes.
Indication: 〈ctobDeliver |p, m〉 : Delivers a message m broadcast by process p.

Reasoning: (2 points)
If we replace URB with Causal URB in TOB, the local deliveries in cubDeliver will respect the causal order
of the messages, i.e., if message m→m′, m′ is not delivered unless m has already been delivered. Therefore,
m′ cannot be proposed to Consensus (added to pending), unless m is proposed at the same time or m has
already been ctobDelivered. Assuming that the sorting procedure is deterministic and respects the causal order
of the messages, the messages are delivered in both a Causal and a Total Order manner.
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Algorithm 1 Causal Total Order Broadcast. (4 points)

Implements:
CausalTotalOrderBroadcast (ctob).

Uses:
CausalUniformBroadcast (cub).
UniformConsensus (ucons).

Upon event 〈Init〉 do
1: delivered := ∅;
2: pending := ∅;
3: wait := false;
4: sn := 1;

Upon event 〈ctobBroadcast |m〉 do
1: trigger 〈cubBroadcast |m〉;

Upon event 〈cubDeliver |pi, m〉 do
1: if m /∈ delivered then
2: pending := pending ∪ (pi, m);

Upon (pending 6= ∅) and wait = false do

1: wait := true;
2: trigger 〈uconsPropose |pending〉sn;

Upon event 〈uconsDecide |decided〉sn do

1: pending := pending \ decided;
2: ordered := deterministicSort(decided); . the sorting procedure respects the causal order of messages
3: forall (pi, m) ∈ ordered do
4: trigger 〈ctobDeliver |pi, m〉;
5: delivered := delivered ∪ m;
6: sn := sn + 1;
7: wait := false;

1.2 Question 2 (5 points)

Algorithm 2 implements a FIFO Uniform Broadcast (FUB) abstraction by using vector clocks. Algorithm 3,
in turn, implements a Causal Order Uniform Broadcast (CUB) abstraction, using only FUB as an underlying
module. Please answer the following questions:

1. Does the implementation presented in Algorithm 3 work correctly? Explain your reasoning for or against.
If you think that the implementation is incorrect, then give modifications to make it correct. (3 points)

Answer: Algorithm 3 does not work correctly, because the local message number lsn in the FIFO module
is only incremented when a message is sent. Imagine an execution where a process pi sends a message m,
process pj receivesm, and immediately broadcastsm′. If for some reasonm is delayed by the network, and
a different process pk receives m′ before receiving m, pk will fubDeliver and subsequently cubDeliver m′,
because the serial number of messagem′ is 1 and the vector clock value at process pk for process pj is also 1.

A necessary modification to Algorithm 3 is to insert a line in the procedure fubDeliver that will resend
the fubDelivered messages upon receipt: trigger 〈fubBroadcast |m〉. Resending all received messages
increases the lsn of the current process, getting it ready for the next causal message. A receiving process
will therefore not deliver a message, unless it has already delivered all messages that were sent (including
resent) by the same process, since those will have lower serial numbers. This ensures causality.

2. Can the delivered vector be removed from Algorithm 3? (2 points)

Answer: The delivered vector can safely be removed from Algorithm 3 in its current implementation, i.e.,
before the proposed modification. That is true because the FUB will only pass the messages to CUB whose
serial number is the one that it expects (vector next). Furthermore, because of the no duplication property
of Uniform Reliable Broadcast (UB), the same message will only be transmitted once from UB to FUB
(we rely on UB’s delivered vector). (Even if the no duplication property did not exist, FUB will continue
to work properly, however, its pending vector will constantly increase in size if messages are resend.)

After the proposed modification is made, the delivered vector cannot be removed from CUB, because each
message will then be resent by all correct processes, thus there will need to be a mechanism of filtering
out the N-1 copies of each message, where N is the number of correct processes at a given moment.
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Algorithm 2 FIFO Uniform Broadcast using vector clocks.

Implements:
FIFOUniformBroadcast (fub).

Uses:
UniformBroadcast (ub).

Upon event 〈Init〉 do
1: pending := ∅;
2: lsn := 0;
3: next := [1]N ;

Upon event 〈fubBroadcast |m〉 do
1: lsn = lsn + 1;
2: trigger 〈ubBroadcast |(m, lsn)〉;

Upon event 〈ubDeliver |pi, (m, sn)〉 do
1: pending := pending ∪ (pi, m, sn);
2: while (pi, m, sn) ∈ pending such that sn = next[pi] do
3: next[pi] := next[pi] + 1;
4: pending := pending \ (pi, m, sn);
5: trigger 〈fubDeliver |pi, m〉;

Algorithm 3 Causal Order Uniform Broadcast based on FIFO Uniform Broadcast.

Implements:
CausalOrderUniformBroadcast (cub).

Uses:
FIFOUniformBroadcast (fub).

Upon event 〈Init〉 do
1: delivered := ∅;

Upon event 〈cubBroadcast |m〉 do
1: trigger 〈fubBroadcast |m〉;

Upon event 〈fubDeliver |pi, m〉 do
1: if m /∈ delivered then
2: trigger 〈fubBroadcast |m〉;
3: trigger 〈cubDeliver |pi, m〉;
4: delivered = delivered ∪ m;

2 Consensus (14 points)

2.1 Question 1 (4 points)

Write the properties of Consensus with their description. Answer.

• Validity: Any value decided is a value proposed

• Agreement: No two correct processes decide differently

• Termination: Every correct process eventually decides

• Integrity: No process decides twice

2.2 Question 2 (5 points)

We assume a crash-free model where processes aim to solve Consensus by proposing and deciding on real
values (from R). We define malicious processes to be processes which can lie about what they propose. For
instance, suppose process p is malicious, then p can propose value v. If Consensus decides on v, p can refuse
its proposal of v; as a result, the validity property of consensus is broken. Robust Consensus fulfills the same
properties of Consensus except validity, which is replaced by Robust Validity as described below:

Robust Validity: Any value decided is proposed by a non-malicious process, or the value is bounded
between two values proposed by non-malicious processes.
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Given a system with N processes, none of which may crash, out of which f are malicious, such that
f < N

2 −1, devise an algorithm that implements Robust Consensus. You are allowed to use Best Effort
Broadcast or any additional modules.

Answer. Take any algorithm from the course, replace ordering the values and taking the smallest/largest,
by ordering the values and taking the median among all proposition.

2.3 Question 3 (5 points)

Consider any Consensus algorithm that is implemented using the Eventually Perfect Failure detector �P and
relies on a majority of correct processes. Does this algorithm solve the Uniform variant or the Non-Uniform
variant of Consensus? Explain your answer.
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3 Shared Memory, Atomic Commit (14 points)

3.1 Question 2 (4 points)

State the properties of the following with a short description of each property.

• Non-Blocking Atomic Commit (2 points)
Answer. Agreement: No two processes decide differently.
Termination: Every correct process eventually decides.
Commit-Validity: 1 can only be decided if all processes propose 1.
Abort-Validity: 0 can only be decided if some process crashes or votes 0.

• ACID properties (2 points)
Answer. Atomicity: a transaction either performs entirely or none at all.
Consistency: a transaction transforms a consistent state into another consistent state.
Isolation: a transaction appears to be executed in isolation.
Durability: the effects of a transaction that commits are permanent.

3.2 Question 2 (6 points)

Answer the following questions:

• Is it possible to implement Atomic Commit with an Eventually Perfect Failure Detector if a process can
crash? Briefly motivate your answer. (4 points)

Answer. No.

• Is it possible to implement Atomic Commit with only a Uniform Consensus module if a process can
crash? Briefly motivate your answer. (2 points)

Answer. Yes.

3.3 Question 3 (4 points)

Implement an 1-N atomic register using an arbitrary number of 1-1 atomic registers.
Answer: Suppose p0 is the only writer among the N processes to the 1-N atomic register. We consider a N

by N matrix of 1-1 atomic registers. In row i and column j, pi is the writer and pj is the reader. For writing v
in the 1-N atomic register, p0 writes v with the time-stamp in all 1-1 atomic registers in row 0. For reading from
the 1-N atomic register by pi, pi finds the value with the highest time-stamp in column i, named v∗, and write
v∗ with the corresponding time-stamp to all the registers in row i. After all these writing finished, pi reads v∗.
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4 Group Membership, TRB, View Synchronous Communication
(14 points)

4.1 Question 1 (6 points)

Consider a system where processes which crash can transmit a ”farewell” message to the remaining processes.
An Augmented Failure Detector (AP) is a failure detection module that has this feature, and with the following
interface:

Events:

• Indication: 〈Crash |p,m〉: Signals that process p crashed with farewell message m.

• Request: 〈Farewell |m〉: A process updates the farewell message which will be later transmitted (upon
a crash) to other processes.

Properties:

AP1. Strong Completeness Eventually, every process that crashes is permanently suspected by every
correct process.

AP2. Strong Accuracy No process is suspected before it crashes.

AP3. Validity If a process p is suspected, then the suspicion indication includes the last farewell message
set by process p.

Answer the three questions below.

1. What is the difference between the Eventually Perfect Failure Detector and AP? (1 points)
There are multiple differences: the 〈Farewell |m〉 request, the farewell message m in 〈Crash |p,m〉, the
Accuracy property in AP is Strong (not Eventually Strong), as well as the Validity property.

2. If the system model is synchronous, can we implement the AP abstraction? If yes, briefly describe your
implementation; is any module necessary? (2 points)
An implementation could be using uniform reliable broadcast to ensure that the farewell message m
is propagated to all processes when 〈Farewell |m〉 is called. Then a traditional failure detector is
implemented, and when a process p is suspected, the locally stored farewell message for p is included
in the 〈Crash |p,m〉 indication.
The most important part of the implementation is that the request 〈Farewell |m〉 should not return to the
caller (higher-level module) until message m has finished uniformly broadcasting to the other processes.

3. What if the system model is asynchronous? Briefly describe your implementation if it can be imple-
mented. If any module is necessary in your implementation, give a proof that it is indeed necessary. (3
points)

If the system is asynchronous, then properties AP1 and AP2 cannot be implemented, because there
are no assumptions on how much time it takes for a process to timeout and become suspected. See the
implementation details of failure detectors in the Introduction slides. For this reason, the AP abstraction
cannot be implemented.

4.2 Question 2 (4 points)

The classic problem of Terminating Reliable Broadcast (TRB) is defined for a specific broadcaster process
pi=src. In this classic model, all processes have knowledge of who src is. We redefine this problem to remove
this assumption: what if the broadcaster is unique but unknown? Specifically, at initialization, any single
process pj can be nominated as the broadcaster, e.g., through a parameter passed to the 〈Init〉 procedure.
The identity of pi is initially unknown to all other processes except the nominated process.

We call this abstraction AnyTRB, having the same properties and interface as classic TRB, except that the
request 〈trbBroadcast |m〉 can only be invoked by the nominated broadcaster. Below we show the Init procedure
where a process checks if it was nominated as the broadcaster and stores this information in a local variable.

Algorithm 4 Init procedure for AnyTRB.

Upon event 〈Init |src〉 do
1: bcast=false; . Local variable to remember if we are the nominated source.
2: if src = true then . src can be true or false.
3: bcast=true; . We are nominated as source.

Answer the two questions below.
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1. Is it possible to implement AnyTRB using only Best Effort Broadcast, Consensus, and P? Describe your
implementation if yes, or otherwise explain why is it not possible. (2 points)

An implementation is possible as follows, informally. Each process broadcasts whether they are the
nominated process or not. All processes wait until they hear from all the other processes (either their
nomination status or a suspicion). If none of the alive processes was nominated, then all processes can
deliver φ (this means that the nominated process pi crashed and was suspected, hence the other processes
will never be able to deliver a message from pi); otherwise, the nominated process simply broadcasts
its message and processes agree using Consensus to either deliver the message or φ.

2. Assume we are allowed to use the AP abstraction we defined at Question 1 earlier. Can we implement
AnyTRB? Describe your implementation if yes and state if any additional modules are necessary besides
AP; otherwise, explain why is it not possible. (2 points)

This implementation is significantly simpler: processes set as their farewell message their nomination
status as well as the message they wish to broadcast, and then also attempt to broadcast this information.
Regardless of whether the nominated process pi crashes or not, all processes will deliver this information
and consequently decide on delivering pi’s message. This implementation assumes that processes do not
crash before setting their farewell message.

4.3 Question 3 (4 points)

Answer the two questions below.

1. Explain the purpose of the block events in the View Synchronous Broadcast abstraction. (2 points)

In VS, the block events allow the abstraction to signal to the application that a new view is ready, such
that the application stops initiating new broadcast messages, allowing the installation of a new view.

2. State the Accuracy property of Group Membership. Is this a safety or a liveness property? (2
points)

Accuracy states that if some process installs a view (i,M) and p /∈M, then p has crashed. This is a
safety property.
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