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Intuition
Broadcast is useful for instance in applications 
where some processes subscribe to events 
published by other processes (e.g., stocks)

The subscribers might require some 
reliability guarantees from the broadcast 
service (we say sometimes quality of service
– QoS) that the underlying network does not 
provide
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Overview

We shall consider three forms of reliability for 
a broadcast primitive
(1) Best-effort broadcast
(2) (Regular) reliable broadcast
(3) Uniform (reliable) broadcast
We shall give first specifications and 
then algorithms
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Best-effort broadcast (beb)

Events
Request: <bebBroadcast, m>
Indication: <bebDeliver, src, m>

• Properties: BEB1, BEB2, BEB3
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Best-effort broadcast (beb)
Properties

BEB1. Validity: If pi and pj are correct, 
then every message broadcast by pi is 
eventually delivered by pj
BEB2. No duplication: No message is 
delivered more than once
BEB3. No creation: No message is 
delivered unless it was broadcast
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Reliable broadcast (rb)

Events
Request: <rbBroadcast, m>
Indication: <rbDeliver, src, m>

• Properties: RB1, RB2, RB3, RB4
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Reliable broadcast (rb)

Properties
RB1 = BEB1. 
RB2 = BEB2. 
RB3 = BEB3.

RB4. Agreement: For any message m, if 
any correct process delivers m, then every 
correct process delivers m
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Reliable broadcast
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Reliable broadcast
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Reliable broadcast
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Uniform broadcast (urb)

Events
Request: <urbBroadcast, m>
Indication: <urbDeliver, src, m>

• Properties: URB1, URB2, URB3, URB4
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Uniform broadcast (urb)
Properties

URB1 = BEB1. 
URB2 = BEB2. 
URB3 = BEB3.

URB4. Uniform Agreement: For any 
message m, if any process delivers m, then 
every correct process delivers m
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Uniform reliable broadcast
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Uniform reliable broadcast
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Overview
We consider three forms of reliability for a 
broadcast primitive
(1) Best-effort broadcast
(2) (Regular) reliable broadcast
(3) Uniform (reliable) broadcast
We give first specifications and then 
algorithms
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Algorithm (beb)

Implements: BestEffortBroadcast (beb).
Uses: PerfectLinks (pp2p).
upon event < bebBroadcast, m> do

forall pi Î S do
trigger < pp2pSend, pi, m>;

upon event < pp2pDeliver, pi, m> do
trigger < bebDeliver, pi, m>; 
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Algorithm (beb)
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Algorithm (beb)

Proof (sketch)
BEB1. Validity: By the validity property of perfect 

links and the very facts that (1) the sender sends the 
message to all and (2) every correct process that 
pp2pDelivers a message bebDelivers it
BEB2. No duplication: By the no duplication 
property of perfect links
BEB3. No creation: By the no creation property of 
perfect links
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Algorithm  (beb)
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Algorithm  (rb)

Implements: ReliableBroadcast (rb).
Uses: 

BestEffortBroadcast (beb).  
PerfectFailureDetector (P).

upon event < Init > do
delivered := Æ; 
correct := S;
forall pi Î S do from[pi] := Æ;
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Algorithm  (rb – cont’d)

upon event < rbBroadcast, m> do
delivered := delivered U {m}; 
trigger < rbDeliver, self, m>;
trigger < bebBroadcast, [Data,self,m]>;
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Algorithm  (rb – cont’d)

upon event < crash, pi > do
correct := correct \ {pi};
forall [pj,m] Î from[pi] do

trigger < bebBroadcast,[Data,pj,m]>;
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Algorithm  (rb – cont’d)
upon event < bebDeliver, pi, [Data,pj,m]> do

if m Ï delivered then 
delivered := delivered U {m};
trigger < rbDeliver, pj, m>;
if pi Ï correct then

trigger < bebBroadcast,[Data,pj,m]>;
else 

from[pi] := from[pi] U {[pj,m]};



29

Algorithm (rb)
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Algorithm (rb)
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Algorithm (rb)
Proof (sketch)

RB1. RB2. RB3: as for the 1st algorithm
RB4. Agreement: Assume some correct process 
pi rbDelivers a message m rbBroadcast by some 
process pk. If pk is correct, then by property 
BEB1, all correct processes bebDeliver and then 
rebDeliver m. If pk crashes, then by the 
completeness property of P, pi detects the crash 
and bebBroadcasts m to all. Since pi is correct, 
then by property BEB1, all correct processes 
bebDeliver and then rebDeliver m.
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Algorithm  (urb)

Implements: uniformBroadcast (urb).
Uses: 

BestEffortBroadcast (beb).  
PerfectFailureDetector (P).

upon event < Init > do
correct := S;
delivered := forward := Æ; 

ack[Message] := Æ;
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Algorithm  (urb – cont’d)

upon event < crash, pi > do
correct := correct \ {pi};

upon event < urbBroadcast, m> do
forward := forward U {[self,m]}; 
trigger < bebBroadcast, [Data,self,m]>;
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Algorithm  (urb – cont’d)

upon event <bebDeliver, pi, [Data,pj,m]> do
ack[m] := ack[m] U {pi};
if [pj,m] Ï forward then

forward := forward U {[pj,m]};
trigger < bebBroadcast,[Data,pj,m]>;
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Algorithm  (urb – cont’d)

upon event (for any [pj,m] Î forward)              
<correct Í ack[m]> and <m Ï delivered> do

delivered := delivered U {m};
trigger < urbDeliver, pj, m>;
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Algorithm (urb)
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Algorithm (urb)
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Algorithm (urb)

Proof (sketch)
URB2. URB3: follow from BEB2 and BEB3
Lemma: If a correct process pi bebDelivers a 
message m, then pi eventually urbDelivers m. 
Any process that bebDelivers m bebBroadcasts m. 
By the completeness property of the failure 
detector and property BEB1, there is a time at 
which pi bebDelivers m from every correct process 
and hence urbDelivers m.
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Algorithm (urb)

Proof (sketch)
URB1. Validity: If a correct process pi 
urbBroadcasts a message m, then pi eventually 
bebBroadcasts and bebDelivers m: by our lemma, 
pi urbDelivers m.
URB4. Agreement: Assume some process pi 
urbDelivers a message m. By the algorithm and 
the completeness and accuracy properties of the 
failure detector, every correct process bebDelivers 
m. By our lemma, every correct process will 
urbDeliver m.


