
1© R. Guerraoui

Distributed Algorithms

Reliable Broadcast

Prof R. Guerraoui
Lpdwww.epfl.ch

2

Broadcast

B
A

C

m

m

deliver

broadcast

deliver

3

Best-effort broadcast
Reliable broadcast
Uniform broadcast

P1

P2

P3

Broadcast abstractions

4

Modules of a process

request (deliver)

indication

(deliver)

indication

request (deliver)

indication
(deliver)

request (deliver)

indication

5

Intuition
Broadcast is useful for instance in applications
where some processes subscribe to events
published by other processes (e.g., stocks)

The subscribers might require some
reliability guarantees from the broadcast
service (we say sometimes quality of service
– QoS) that the underlying network does not
provide

6

Overview

We shall consider three forms of reliability for
a broadcast primitive
(1) Best-effort broadcast
(2) (Regular) reliable broadcast
(3) Uniform (reliable) broadcast
We shall give first specifications and
then algorithms

7

Best-effort broadcast (beb)

Events
Request: <bebBroadcast, m>
Indication: <bebDeliver, src, m>

• Properties: BEB1, BEB2, BEB3

8

Best-effort broadcast (beb)
Properties

BEB1. Validity: If pi and pj are correct,
then every message broadcast by pi is
eventually delivered by pj
BEB2. No duplication: No message is
delivered more than once
BEB3. No creation: No message is
delivered unless it was broadcast

9

Best-effort broadcast

p1

p2

p3

m

m

delivery

delivery

delivery

10

Best-effort broadcast

m1

m1

crashp1

p2

p3

m2 m2
delivery

delivery

delivery

delivery

11

Reliable broadcast (rb)

Events
Request: <rbBroadcast, m>
Indication: <rbDeliver, src, m>

• Properties: RB1, RB2, RB3, RB4

12

Reliable broadcast (rb)

Properties
RB1 = BEB1.
RB2 = BEB2.
RB3 = BEB3.

RB4. Agreement: For any message m, if
any correct process delivers m, then every
correct process delivers m

13

Reliable broadcast

m1

m1

crashp1

p2

p3

m2

m2

delivery

delivery

delivery

delivery

14

Reliable broadcast

m1

m1

crashp1

p2

p3

m2

delivery

delivery

delivery

15

Reliable broadcast

m1

m1

crashp1

p2

p3

m2
delivery delivery

m2

crash

delivery

deliverydelivery

16

Uniform broadcast (urb)

Events
Request: <urbBroadcast, m>
Indication: <urbDeliver, src, m>

• Properties: URB1, URB2, URB3, URB4

17

Uniform broadcast (urb)
Properties

URB1 = BEB1.
URB2 = BEB2.
URB3 = BEB3.

URB4. Uniform Agreement: For any
message m, if any process delivers m, then
every correct process delivers m

18

Uniform reliable broadcast

m1

m1

crashp1

p2

p3

m2
delivery delivery

m2

crash

delivery delivery

deliverydelivery

19

Uniform reliable broadcast

m1

m1

crashp1

p2

p3

m2
delivery

crash

delivery

delivery

20

Overview
We consider three forms of reliability for a
broadcast primitive
(1) Best-effort broadcast
(2) (Regular) reliable broadcast
(3) Uniform (reliable) broadcast
We give first specifications and then
algorithms

21

Algorithm (beb)

Implements: BestEffortBroadcast (beb).
Uses: PerfectLinks (pp2p).
upon event < bebBroadcast, m> do

forall pi Î S do
trigger < pp2pSend, pi, m>;

upon event < pp2pDeliver, pi, m> do
trigger < bebDeliver, pi, m>;

22

Algorithm (beb)

p1

p2

p3

m

m

delivery

delivery

delivery

23

Algorithm (beb)

Proof (sketch)
BEB1. Validity: By the validity property of perfect

links and the very facts that (1) the sender sends the
message to all and (2) every correct process that
pp2pDelivers a message bebDelivers it
BEB2. No duplication: By the no duplication
property of perfect links
BEB3. No creation: By the no creation property of
perfect links

24

Algorithm (beb)

m1

m1

crashp1

p2

p3

m2 m2

delivery

delivery

delivery

delivery

25

Algorithm (rb)

Implements: ReliableBroadcast (rb).
Uses:

BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event < Init > do
delivered := Æ;
correct := S;
forall pi Î S do from[pi] := Æ;

26

Algorithm (rb – cont’d)

upon event < rbBroadcast, m> do
delivered := delivered U {m};
trigger < rbDeliver, self, m>;
trigger < bebBroadcast, [Data,self,m]>;

27

Algorithm (rb – cont’d)

upon event < crash, pi > do
correct := correct \ {pi};
forall [pj,m] Î from[pi] do

trigger < bebBroadcast,[Data,pj,m]>;

28

Algorithm (rb – cont’d)
upon event < bebDeliver, pi, [Data,pj,m]> do

if m Ï delivered then
delivered := delivered U {m};
trigger < rbDeliver, pj, m>;
if pi Ï correct then

trigger < bebBroadcast,[Data,pj,m]>;
else

from[pi] := from[pi] U {[pj,m]};

29

Algorithm (rb)

m

m

p1

p2

p3 delivery

delivery

delivery

30

Algorithm (rb)

m

m

p1

p2

p3

crash

m

m

delivery

delivery

31

Algorithm (rb)
Proof (sketch)

RB1. RB2. RB3: as for the 1st algorithm
RB4. Agreement: Assume some correct process
pi rbDelivers a message m rbBroadcast by some
process pk. If pk is correct, then by property
BEB1, all correct processes bebDeliver and then
rebDeliver m. If pk crashes, then by the
completeness property of P, pi detects the crash
and bebBroadcasts m to all. Since pi is correct,
then by property BEB1, all correct processes
bebDeliver and then rebDeliver m.

32

Algorithm (urb)

Implements: uniformBroadcast (urb).
Uses:

BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event < Init > do
correct := S;
delivered := forward := Æ;

ack[Message] := Æ;

33

Algorithm (urb – cont’d)

upon event < crash, pi > do
correct := correct \ {pi};

upon event < urbBroadcast, m> do
forward := forward U {[self,m]};
trigger < bebBroadcast, [Data,self,m]>;

34

Algorithm (urb – cont’d)

upon event <bebDeliver, pi, [Data,pj,m]> do
ack[m] := ack[m] U {pi};
if [pj,m] Ï forward then

forward := forward U {[pj,m]};
trigger < bebBroadcast,[Data,pj,m]>;

35

Algorithm (urb – cont’d)

upon event (for any [pj,m] Î forward)
<correct Í ack[m]> and <m Ï delivered> do

delivered := delivered U {m};
trigger < urbDeliver, pj, m>;

36

Algorithm (urb)

m

m

p1

p2

p3

m

m

m

m

delivery

delivery

delivery

37

Algorithm (urb)

m
p1

p2

p3

crash

m

m

m

delivery

delivery

suspicion

38

Algorithm (urb)

Proof (sketch)
URB2. URB3: follow from BEB2 and BEB3
Lemma: If a correct process pi bebDelivers a
message m, then pi eventually urbDelivers m.
Any process that bebDelivers m bebBroadcasts m.
By the completeness property of the failure
detector and property BEB1, there is a time at
which pi bebDelivers m from every correct process
and hence urbDelivers m.

39

Algorithm (urb)

Proof (sketch)
URB1. Validity: If a correct process pi
urbBroadcasts a message m, then pi eventually
bebBroadcasts and bebDelivers m: by our lemma,
pi urbDelivers m.
URB4. Agreement: Assume some process pi
urbDelivers a message m. By the algorithm and
the completeness and accuracy properties of the
failure detector, every correct process bebDelivers
m. By our lemma, every correct process will
urbDeliver m.

