
1

Distributed systems

Causal Broadcast

Prof R. Guerraoui
Distributed Programming Laboratory

2

Overview
Intuitions: why causal broadcast?
Specifications of causal broadcast
Algorithms:

A non-blocking algorithm using the past
and
A blocking algorithm using vector

clocks

3

Broadcast

B
A

C

m

m

deliver

broadcast

deliver

4

Intuitions (1)

So far, we did not consider ordering among
messages; In particular, we considered
messages to be independent
Two messages from the same process might
not be delivered in the order they were
broadcast
A message m1 that causes a message m2
might be delivered by some process after m2

5

Intuitions (2)
Consider a system of news where every new
event that is displayed in the screen contains
a reference to the event that caused it, e.g.,
a comment on some information includes a
reference to the actual information
Even uniform reliable broadcast does not
guarantee such a dependency of delivery
Causal broadcast alleviates the need for the
application to deal with such dependencies

6

Modules of a process

request

indication

indication

indication

request

7

Overview

Intuitions: why causal broadcast?
Specifications of causal broadcast
Algorithms:

A non-blocking algorithm using the past and
A blocking algorithm using vector clocks

8

Causal broadcast
Events

Request: <coBroadcast, m>
Indication: <coDeliver, src, m>

• Property:
• Causal Order (CO)

9

Causality
Let m1 and m2 be any two messages: m1 -
> m2 (m1 causally precedes m2) iff

C1 (FIFO order). Some process pi
broadcasts m1 before broadcasting m2
C2 (Local order). Some process pi delivers
m1 and then broadcasts m2
C3 (Transitivity). There is a message m3
such that m1 -> m3 and m3 - > m2

10

Causal broadcast

Events
Request: <coBroadcast, m>
Indication: <coDeliver, src, m>

• Property:
• CO: If any process pi delivers a message

m2, then pi must have delivered every
message m1 such that m1 -> m2

11

Causality ?

p1

p2

p3

m2
delivery

delivery

delivery

m1

m1
delivery

m2

delivery

delivery

12

Causality ?

p1

p2

p3

m2
delivery

delivery

m1

m1
delivery

m2

delivery

delivery

13

Causality ?
p1

p2

p3
m2

delivery

delivery

delivery

m1

m1
delivery

delivery

delivery

m2

14

Reliable causal broadcast (rcb)
Events

Request: <rcoBroadcast, m>
Indication: <rcoDeliver, src, m>

• Properties:
• RB1, RB2, RB3, RB4 +
• CO

15

Uniform causal broadcast (ucb)
Events

Request: <ucoBroadcast, m>
Indication: <ucoDeliver, src, m>

• Properties:
• URB1, URB2, URB3, URB4 +
• CO

16

Overview
Intuitions: why causal broadcast?
Specifications of causal broadcast
Algorithms:

A non-blocking algorithm using the past
and
A blocking algorithm using vector clocks

17

Algorithms
We present reliable causal broadcast
algorithms using reliable broadcast

We obtain uniform causal broadcast
algorithms by using instead an underlying
uniform reliable broadcast

18

Algorithm 1
Implements: ReliableCausalOrderBroadcast (rco).
Uses: ReliableBroadcast (rb).
upon event < Init > do

delivered := past := Æ;
upon event < rcoBroadcast, m> do

trigger < rbBroadcast, [Data,past,m]>;
past := past U {[self,m]};

19

Algorithm 1 (cont’d)
upon event <rbDeliver,pi,[Data,pastm,m]> do

if m Ï delivered then
(*) forall [sn, n] in pastm do

if n Ï delivered then
trigger < rcoDeliver,sn,n>;
delivered := delivered U {n};
past := past U {[sn, n]};

20

Algorithm 1 (cont’d)
(*)

…
…
…

trigger <rcoDeliver,pi,m>;
delivered := delivered U {m};
past := past U {[pi,m]};

21

Algorithm 1
p1

p2

p3

m2(m1)

m2

m1

m1

m1

m1
m2(m1)

m2

m2m1

22

Algorithm 1
p1

p2

p3

m1

m1
m2(m1)

m2(m1)
m2

m1

m1 m2

m2m1

23

Uniformity
Algorithm 1 ensures causal reliable broadcast

If we replace reliable broadcast with uniform
reliable broadcast, Algorithm 1 would ensure
uniform causal broadcast

24

Algorithm 1’ (gc)
Implements: GarbageCollection (+ Algo 1).
Uses:

ReliableBroadcast (rb).
PerfectFailureDetector(P).

upon event < Init > do
delivered := past := Æ;
correct := S;
ackm := Æ (for all m);

25

Algorithm 1’ (gc – cont’d)
upon event < crash, pi > do

correct := correct \ {pi}

• upon for some m Î delivered: self Ï ackm do
• ackm := ackm U {self};
• trigger < rbBroadcast, [ACK,m]>;

26

Algorithm 1’ (gc – cont’d)
upon event <rbDeliver,pi,[ACK,m]> do

ackm := ackm U {pi};
if forall pj Î correct: pj Î ackm do

past := past \ {[sm, m]};

27

Algorithm 2
Implements: ReliableCausalOrderBroadcast (rco).
Uses: ReliableBroadcast (rb).

upon event < Init > do

for all pi Î S: VC[pi] := 0;
pending := Æ

28

Algorithm 2 (cont’d)

upon event < rcoBroadcast, m> do
trigger < rcoDeliver, self, m>;
trigger < rbBroadcast, [Data,VC,m]>;
VC[self] := VC[self] + 1;

29

Algorithm 2 (cont’d)
upon event <rbDeliver, pj, [Data,VCm,m]> do

if pj ≠ self then
pending := pending È (pj, [Data,VCm,m]);
deliver-pending.

30

Algorithm 2 (cont’d)
procedure deliver-pending is

While (s, [Data,VCm,m]) Î pending s.t.
for all pk: (VC[pk] ³ VCm[pk]) do

pending := pending - (s, [Data,VCm,m]);
trigger < rcoDeliver, self, m>;
VC[s] := VC[s] + 1.

31

Algorithm 2

p1

p2

p3
m2

m1

m1

m1

m1

m2

m2

m2m1

[0,0,0]

m2

[1,0,0]

32

Algorithm 2
p1

p2

p3
m2

m1

m1

m1

m1

m2

m2

[1,0,0]

[1,0,0]

[0,0,0]

m2

m1

m2

