Distributed systems

Causal Broadcast

Prof R. Guerraoui
Distributed Programming Laboratory



» ’ »

W
p
P

Overview

~ Intuitions: why causal broadcast?
~ Specifications of causal broadcast
~ Algorithms:

~ A non-blocking algorithm using the past
and

~ A blocking algorithm using vector
clocks




Broadcast




» ’ .

W

Intuitions ‘(1)

~ So far, we did not consider ordering among
messages; In particular, we considered
messages to be independent

- Two messages from the same process might
not be delivered in the order they were
broadcast

- A message m1 that causes a message m2
might be delivered by some process after m2




» ’ .

W
« A\

Intuitions (2)

~ Consider a system of news where every new
event that is displayed in the screen contains
a reference to the event that caused it, e.g.,
a comment on some information includes a
reference to the actual information

~ Even uniform reliable broadcast does not
guarantee such a dependency of delivery

- Causal broadcast alleviates the need for the
application to deal with such dependencies

5



| .

Modules of a process
indication

Annlications -
[R) Causal broadeast <

request

on | (R Relialble broageast
allre deliector
Channels




» ’ »

W
« A

Overview

~ Intuitions: why causal broadcast?

~ Specifications of causal broadcast

~ Algorithms:

~ A non-blocking algorithm using the past and
~ A blocking algorithm using vector clocks




Causal broadcast

- Events
» Request: <coBroadcast, m>
» Indication: <coDeliver, src, m>

o Property:
e Causal Order (CO)




» ’ .

Causality

-~ Let m1 and m2 be any two messages: ml1 -
> m2 (ml causally precedes m2) iff

~ C1 (FIFO order). Some process pi
broadcasts m1 before broadcasting m2

~ C2 (Local order). Some process pi delivers
m1 and then broadcasts m2

~ C3 (Transitivity). There is a message m3
such that m1 -> m3 and m3 - > m2




» ’ .

W

Causal broadcast

- Events
» Request: <coBroadcast, m>
» Indication: <coDeliver, src, m>
o Property:

e CO. If any process pi delivers a message
m2, then pi must have delivered every
message m1 such that m1 -> m2

10



Causality ?

delivery delivery
\ \mz
ml
delive delivery
m? ml

p3 ‘ delivery ‘ delivery

11



» » P .

« . v i
-

Causality ?

delivery delivery
\ \mz
ml
delivery delivery
m? ml

p3 ‘ delivery

12




Causality ?

deli deli

ol elivery elivery

\ m2

ml , :

delivery delivery
p2 ~
. ml

p3 delivery delivery

13



¢«

| .

Reliable causal broédcast (rcb)

Events
» Request: <rcoBroadcast, m>
» Indication: <rcoDeliver, src, m>
o Properties:
e RB1, RB2, RB3, RB4 +
e CO

14



¢«

| .

Uniform causal broédcast (ucb)

Events
» Request: <ucoBroadcast, m>
» Indication: <ucoDeliver, src, m>
o Properties:
e URB1, URB2, URB3, URB4 +
e CO

15



» ’ .

W
« : -
P

Overview

~ Intuitions: why causal broadcast?
~ Specifications of causal broadcast
~ Algorithms:

~ A non-blocking algorithm using the past
and

~ A blocking algorithm using vector clocks

16



» ’ .

W
« A\

Algorithms

~ We present reliable causal broadcast
algorithms using reliable broadcast

~ We obtain uniform causal broadcast
algorithms by using instead an underlying
uniform reliable broadcast

17



Algorithm 1

- Implements: ReliableCausalOrderBroadcast (rco).

- Uses: ReliableBroadcast (rb).

~upon event < Init > do

» delivered := past := &;

- upon event < rcoBroadcast, m> do

~ trigger < rbBroadcast, [Data,past,m]>;
~ past := past U {[self,m]};

18



Algorithm 1 (cont'd)

- upon event <rbDeliver,pi,[Data,pastm,m]> do

if m ¢ delivered then
(*) forall [sn, n] in pastm do
if n ¢ delivered then
trigger < rcoDeliver,sn,n>;
delivered := delivered U {n};
past := past U {[sn, n]};

19



Algorithm 1 (cont'd)
(*)

j EEN

, EEN

ETL

trigger <rcoDeliver,pi,m>;
delivered := delivered U {m};
past := past U {[pi,m]};

20



Algorithm 1

pl ml m?2

X \rﬁ(ml)

m

| m2
p2 ml
ml
m2(ml)
ml

p3 ‘ ‘ m2

21



Algorithm 1
, ml m?2
g \ m2(ml)
ml
ml m?2
p2 =
ml
m2(ml) ml
p3 m?2

22



Uniformity
~ Algorithm 1 ensures causal reliable broadcast

~ If we replace reliable broadcast with uniform
reliable broadcast, Algorithm 1 would ensure
uniform causal broadcast

23



Algorithm 1’ (gc)

Implements: GarbageCollection (+ Algo 1).
Uses:
» ReliableBroadcast (rb).
» PerfectFailureDetector(P).
upon event < Init > do
delivered := past := J;
- correct :=S;
ackm := ¢ (for all m);

24



Algorithm 1" (gc — cont’d)

upon event < crash, pi > do
correct := correct \ {pi}

e upon for some m < delivered: self ¢ ackm do
e ackm := ackm U {self};
 trigger < rbBroadcast, [ACK,m]>;

25



Algorithm 1" (gc — cont’d)

upon event <rbDeliver,pi,[ACK,m]> do
ackm := ackm U {pi};
if forall pj € correct: pj € ackm do
past := past \ {[sm, m]};

26



-

Algorithm 2

Implements: ReliableCausalOrderBroadcast (rco).
- Uses: ReliableBroadcast (rb).

~ upon event < Init > do
~ for all pi € S: VC[pi] := 0;
- pending := J

27



Algorithm 2 (cont'd)

upon event < rcoBroadcast, m> do
trigger < rcoDeliver, self, m>;
trigger < rbBroadcast, [Data,VC,m]>;
VC[self] := VC[self] + 1;

28



Algorithm 2 (cont'd)

upon event <rbDeliver, pj, [Data,VCm,m]> do
If pj # self then
pending := pending v (pj, [Data,VCm,m]);
deliver-pending.

29



Algorithm 2 (cont'd)

procedure deliver-pending is
While (s, [Data,VCm,m]) € pending s.t.
for all pk: (VC[pk] > VCm[pk]) do
pending := pending - (s, [Data,VCm,m]);
trigger < rcoDeliver, self, m>;
VC[s] := V(C[s] + 1.

30



» » N P

5 4
L ) «

Algorithm 2

5 i ‘ ml ‘ m?2
ml \mz
) ml m?2
p X
ml
m2 10,0,0] ,
03 [1,0.0] ‘ m‘

ml

31



Algorithm 2

pl ml m2
ml\ [1,0,0 m?2
p2 ml m?2
ml
m2 10,0,0]

11,0,0]

p3 m?2
ml

32



