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Intuitions (1)

So far, we did not consider ordering among 
messages; In particular, we considered 
messages to be independent
Two messages from the same process might 
not be delivered in the order they were 
broadcast
A message m1 that causes a message m2 
might be delivered by some process after m2
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Intuitions (2)
Consider a system of news where every new 
event that is displayed in the screen contains 
a reference to the event that caused it, e.g., 
a comment on some information includes a 
reference to the actual information
Even uniform reliable broadcast does not 
guarantee such a dependency of delivery
Causal broadcast alleviates the need for the 
application to deal with such dependencies
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Causal broadcast
Events

Request: <coBroadcast, m>
Indication: <coDeliver, src, m>

• Property:
• Causal Order (CO)
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Causality
Let m1 and m2 be any two messages: m1 -
> m2  (m1 causally precedes m2) iff

C1 (FIFO order). Some process pi 
broadcasts m1 before broadcasting m2
C2 (Local order). Some process pi delivers 
m1 and then broadcasts m2 
C3 (Transitivity). There is a message m3 
such that m1 -> m3 and m3 - > m2
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Causal broadcast

Events
Request: <coBroadcast, m>
Indication: <coDeliver, src, m>

• Property:
• CO: If any process pi delivers a message 

m2, then pi must have delivered every 
message m1 such that m1 -> m2
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Reliable causal broadcast (rcb)
Events

Request: <rcoBroadcast, m>
Indication: <rcoDeliver, src, m>

• Properties:
• RB1, RB2, RB3, RB4 +
• CO 



15

Uniform causal broadcast (ucb)
Events

Request: <ucoBroadcast, m>
Indication: <ucoDeliver, src, m>

• Properties:
• URB1, URB2, URB3, URB4 +
• CO 
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Algorithms
We present reliable causal broadcast
algorithms using reliable broadcast

We obtain uniform causal broadcast
algorithms by using instead an underlying 
uniform reliable broadcast



18

Algorithm 1
Implements: ReliableCausalOrderBroadcast (rco).
Uses: ReliableBroadcast (rb).
upon event < Init > do

delivered := past := Æ;
upon event < rcoBroadcast, m> do

trigger < rbBroadcast, [Data,past,m]>;
past := past U {[self,m]};
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Algorithm 1 (cont’d)
upon event <rbDeliver,pi,[Data,pastm,m]> do

if m Ï delivered then 
(*) forall [sn, n] in pastm do

if n Ï delivered then
trigger < rcoDeliver,sn,n>;
delivered := delivered U {n};
past := past U {[sn, n]};
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Algorithm 1 (cont’d)
(*)

…
…
…

trigger <rcoDeliver,pi,m>;
delivered := delivered U {m};
past := past U {[pi,m]};
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Uniformity
Algorithm 1 ensures causal reliable broadcast

If we replace reliable broadcast with uniform 
reliable broadcast, Algorithm 1 would ensure 
uniform causal broadcast
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Algorithm 1’ (gc)
Implements: GarbageCollection (+ Algo 1).
Uses: 

ReliableBroadcast (rb).
PerfectFailureDetector(P).

upon event < Init > do
delivered := past := Æ;
correct := S; 
ackm := Æ (for all m);
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Algorithm 1’  (gc – cont’d)
upon event < crash, pi > do

correct := correct \ {pi}

• upon for some m Î delivered: self Ï ackm do
• ackm := ackm U {self};
• trigger < rbBroadcast, [ACK,m]>;
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Algorithm 1’  (gc – cont’d)
upon event <rbDeliver,pi,[ACK,m]> do

ackm := ackm U {pi};
if forall pj Î correct: pj Î ackm do

past := past \ {[sm, m]};
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Algorithm 2
Implements: ReliableCausalOrderBroadcast (rco).
Uses: ReliableBroadcast (rb).

upon event < Init > do

for all pi Î S: VC[pi] := 0; 
pending := Æ
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Algorithm 2 (cont’d)

upon event < rcoBroadcast, m> do
trigger < rcoDeliver, self, m>; 
trigger < rbBroadcast, [Data,VC,m]>;
VC[self] := VC[self] + 1;
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Algorithm 2 (cont’d)
upon event <rbDeliver, pj, [Data,VCm,m]> do

if pj ≠ self then
pending := pending È (pj, [Data,VCm,m]);
deliver-pending.
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Algorithm 2 (cont’d)
procedure deliver-pending is

While (s, [Data,VCm,m]) Î pending s.t.
for all pk: (VC[pk] ³ VCm[pk]) do

pending := pending - (s, [Data,VCm,m]);
trigger < rcoDeliver, self, m>;
VC[s] := VC[s] + 1.
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