The Power of Registers

Prof R. Guerraoui
Distributed Programming Laboratory

Registers

Question 1: what objects can we implement with registers?

Question 2: what objects we cannot implement?

Wait-free implementations of atomic objects

- An object is defined by its sequential specification; i.e., by how its operations should be implemented when there is no concurrency: being atomic means preserving the sequential semantics
- Implementations should be wait-free: every process that invokes an operation eventually gets a reply (unless the process crashes)

Counter (sequential spec)

A counter has two operations inc() and read() and maintains an integer x init to 0

- read():
 - return(x)
- f inc():
 - x := x + 1;
 - return(ok)

Naive implementation

- The processes share one register Reg
- read():
 - return(Reg.read())
- f inc():
 - temp:= Reg.read()+1;
 - Reg.write(temp);
 - return(ok)

Atomic implementation

The processes share an array of registers Reg[1,..,N]

- f inc():
 - Reg[i].write(Reg[i].read() +1);
 - return(ok)

Atomic implementation

```
read():
    sum := 0;
    for j = 1 to n do
        sum := sum + Reg[j].read();
    return(sum)
```


Snapshot (sequential spec)

A snapshot has operations update() and scan() and maintains an array x of size N

- scan():
 - return(x)
- update(i,v):
 - x[i] := v;
 - return(ok)

Naive implementation

- The processes share one array of N registers Reg[1,..,N]
- scan():
 - r for j = 1 to N do
 - r x[j] := Reg[j].read();
 - return(x)
- update(i,v):
 - Reg[i].write(v); return(ok)

Non-atomic vs atomic snapshot

What we implement here is some kind of regular snapshot:

A **scan** returns, for every index of the snapshot, the last written values or the value of any concurrent update

We call it collect

Key idea for atomicity

To **scan**, a process keeps reading the entire snapshot (i.e., it **collect**), until two results are the **same**

This means that the snapshot did not change, and it is safe to return without violating atomicity

Same value vs. Same timestamp

Enforcing atomicity

- The processes share one array of N registers Reg[1,..,N]; each contains a value and a timestamp
- We use the following operation for modularity
- collect():
 - for j = 1 to N do
 - r x[j] := Reg[j].read();
 - return(x)

Enforcing atomicity (cont'd)

```
scan():
  temp1 := self.collect();
  while(true) do
     rtemp2 := self.collect();
     f (temp1 = temp2) then
        return (temp1.val)
     rtemp1 := temp2;
r update(i,v):
  Reg[i].write(v,ts);
  return(ok)
```

Wait-freedom?

Key idea for atomicity & wait-freedom

- The processes share an array of *registers* Reg[1,..,N] that contains each:
 - a value,
 - a timestamp, and
 - a copy of the entire array of values

Key idea for atomicity & wait-freedom (cont'd)

- To *scan*, a process keeps collecting and returns a collect if it did not change, or some collect returned by a concurrent *scan*
 - Timestamps are used to check if the collect changes or if a scan has been taken in the meantime
- To update, a process scans and writes the value, the new timestamp and the result of the scan

Snapshot implementation

Every process keeps a local timestamp ts

```
update(i,v):
```

- r ts := ts + 1;
- Reg[i].write(v,ts,self.scan());
- return(ok)

Snapshot implementation

- scan():
 - f t1 := self.collect(); t2:= t1
 - while(true) do
 - r t3:= self.collect();
 - σ if (t3 = t2) then return (t3);
 - r for j = 1 to N do
 - - return (t3[j,3])
 - rt2 := t3

Return the first value in each cell in t3

Possible execution?

