
Distributed systems

Consensus

Prof R. Guerraoui
Distributed Programming Laboratory

2

Consensus
• In the consensus problem, the processes

propose values and have to agree on one
among these values

• Solving consensus is key to solving many
problems in distributed computing (e.g., total
order broadcast, atomic commit, terminating
reliable broadcast)

3

Consensus
C1. Validity: Any value decided is a value
proposed
C2. Agreement: No two correct processes
decide differently
C3. Termination: Every correct process
eventually decides
C4. Integrity: No process decides twice

4

Consensus
p1

p2

p3

propose(0)

decide(1)propose(1)

propose(0) decide(0)

crash

decide(0)

5

Uniform consensus
C1. Validity: Any value decided is a value
proposed
C2’. Uniform Agreement: No two
processes decide differently
C3. Termination: Every correct process
eventually decides
C4. Integrity: No process decides twice

6

p1

p2

p3

propose(0)

decide(0)propose(1)

propose(0) decide(0)

crash

decide(0)

Uniform consensus

7

Consensus
Events
• Request: <Propose, v>
• Indication: <Decide, v’>

• Properties:
• C1, C2, C3, C4

8

Modules of a process

propose

decide

deliver

suspect

broadcast

9

Consensus algorithm I
• A P-based (fail-stop) consensus algorithm

• The processes exchange and update
proposals in rounds and decide on the value
of the non-suspected process with the
smallest id

10

Consensus algorithm II

• A P-based (i.e., fail-stop) uniform consensus
algorithm

• The processes exchange and update proposal
in rounds, and after n rounds decide on the
current proposal value [Lyn96]

11

Consensus algorithm III
• A <>P-based uniform consensus algorithm

assuming a correct majority

• The processes alternate in the role of a
coordinator until one of them succeeds in
imposing a decision [DLS88,CT91]

12

Consensus algorithm I
• The processes go through rounds incrementally (1 to

n): in each round, the process with the id
corresponding to that round is the leader of the round
• The leader of a round decides its current proposal and

broadcasts it to all
• A process that is not leader in a round waits (a) to

deliver the proposal of the leader in that round to
adopt it, or (b) to suspect the leader

13

Consensus algorithm I
Implements: Consensus (cons).
Uses:

BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event < Init > do
• suspected := Æ;
• round := 1; currentProposal := nil;
• broadcast := delivered[] := false;

14

Consensus algorithm I
upon event < crash, pi > do

suspected := suspected U {pi};

• upon event < Propose, v> do
• if currentProposal = nil then
• currentProposal := v;

15

Consensus algorithm I
upon event < bebDeliver, pround, value > do

currentProposal := value;
delivered[round] := true;

upon event delivered[round] = true or
pround Î suspected do

round := round + 1;

16

Consensus algorithm I

upon event pround=self and broadcast=false
and currentProposal¹nil do

trigger <Decide, currentProposal>;
trigger <bebBroadcast, currentProposal>;
broadcast := true;

17

p1

p2

p3

propose(0) decide(0)

propose(1)

propose(0)

Consensus algorithm I

decide(0)

decide(0)

18

p1

p2

p3

propose(0)
decide(0)

propose(1)

propose(0)

decide(1)

decide(1)

crash

Consensus algorithm I

19

Correctness argument
• Let pi be the correct process with the smallest id

in a run R.
• Assume pi decides v.
• If i = n, then pn is the only correct process.
• Otherwise, in round i, all correct processes

receive v and will not decide anything different
from v.

20

Consensus algorithm II
• Algorithm II implements uniform consensus
• The processes go through rounds

incrementally (1 to n): in each round I,
process pI sends its currentProposal to all.
• A process adopts any currentProposal it

receives.
• Processes decide on their currentProposal

values at the end of round n.

21

Consensus algorithm II
Implements: Uniform Consensus (ucons).
Uses:

BestEffortBroadcast (beb).
PerfectFailureDetector (P).

• upon event < Init > do
• suspected := Æ;
• round := 1; currentProposal := nil;
• broadcast := delivered[] := false;
• decided := false

22

Consensus algorithm II
upon event < crash, pi > do

suspected := suspected U {pi};

•upon event < Propose, v> do
if currentProposal = nil then

currentProposal := v;

23

Consensus algorithm II
upon event < bebDeliver, pround, value > do

currentProposal := value;
delivered[round] := true;

24

Consensus algorithm II
upon event delivered[round] = true or

pround Î suspected do
if round=n and decided=false then

trigger <Decide, currentProposal>
decided=true

else
round := round + 1

25

Consensus algorithm II

upon event pround = self and
broadcast = false and
currentProposal ¹ nil do

trigger <bebBroadcast, currentProposal>;
broadcast := true;

26

Consensus algorithm II

p1

p2

p3

propose(0)

propose(1)

propose(0)

decide(0)

decide(0)

decide(0)

27

Correctness argument (A)

• Lemma: If a process pJ completes round I
without receiving any message from pI and J
> I, then pI crashes by the end of round J.

• Proof: Suppose pJ completes round I without
receiving a message from pI, J > I, and pI completes
round J. Since pJ suspects pI in round I, pI has
crashed before pJ completes round I. In round J
either pI suspects pJ (not possible because pI
crashes before pJ) or pI receives round J message
from pJ (also not possible because pI crashes before
pJ completes round I < J).

28

Correctness argument (B)
• Uniform agreement: Consider the process

with the lowest id which decides, say pI.
Thus, pI completes round n. By our previous
lemma, in round I, every pJ with J > I
receives the currentProposal of pI and adopts
it. Thus, every process which sends a
message after round I or decides, has the
same currentProposal at the end of round I.

29

Consensus algorithm III
• A uniform consensus algorithm assuming:
• a correct majority
• a <>P failure detector

• Basic idea: the processes alternate in the
role of a phase coordinator until one of
them succeeds in imposing a decision

30

Consensus algorithm III
• <>P ensures:
• Strong completeness: eventually every

process that crashes is permanently
suspected by all correct processes

• Eventual strong accuracy: eventually no
correct process is suspected by any
process

31

"<>" makes a difference
• Eventual strong accuracy: strong accuracy

holds only after finite time.
• Correct processes may be falsely suspected a

finite number of times.
• This breaks consensus algorithms I and II
•Counter examples for algorithm I and II
(see next slide)

32

Agreement violated with <>P
in algorithm I

p1

p2

p3

propose(0)

propose(1)

propose(1)

decide(1)
decide(0)

suspect p1

33

Agreement violated with <>P
in algorithm II

p1

p2

p3

propose(0)

propose(1)

propose(1)

decide(1)

decide(1)

decide(0)

suspect p1

suspect p3suspect p2

34

Consensus algorithm III
• The algorithm is also round-based: processes

move incrementally from one round to the
other
• Process pi is leader in every round k such

that k mod N = I
• In such a round, pi tries to decide (next 2

slides)

35

Consensus algorithm III
• pi succeeds if it is not suspected

(processes that suspect pi inform pi and
move to the next round; pi does so as
well)
• If pi succeeds, pi uses a reliable broadcast

to send the decision to all (the reliability of
the broadcast is important here to preclude the
case where pi crashes, some other processes
delivers the message and stop while the rest
keeps going without the majority)

36

Consensus algorithm III
• To decide, pi executes steps 1-2-3
• 1. pi selects among a majority the latest

adopted value (latest with respect to the round
in which the value is adopted – see step 2)

• 2. pi imposes that value at a majority: any
process in that majority adopts that value –
pi fails if it is suspected
• 3. pi decides and broadcasts the decision

to all

37

Consensus algorithm III

P1

P2

P3

propose(0)

propose(1)

propose(0)

p1’s round p2’s round p3’s round p1’s round etc

38

Consensus algorithm III

P1

P2

P3

propose(0) decide(0)

propose(1)

propose(0)

decide(0)

decide(0)
[0]

[0][0]

[0]

step 1 step 2
round 1

step 3

[1]

[0]

39

P1

P2

P3

propose(0)

propose(1)

propose(0)

crash

Consensus algorithm III

nack

nack

40

Consensus algorithm III

P1

P2

P3

propose(0)

propose(1)

propose(1)

p1’s round p2’s round p3’s round p1’s round etc

0

nack

0

1

41

Correctness argument A
• Validity and integrity are trivial
• Consider termination: if a correct process

decides, it uses reliable broadcast to send the
decision to all: every correct process decides
• Assume by contradiction that some process is

correct and no correct process decides. We
argue that this is impossible.

42

Correctness argument A’
• By the correct majority assumption and the

completeness property of the failure
detector, no correct process remains blocked
forever in some phase.
• By the accuracy property of the failure

detector, some correct process reaches a
round where it is leader and it is not
suspected and reaches a decision in that
round: a contradiction

43

Correctness argument B
• Consider now agreement
• Let k be the first round in which some

process pi decides some value v, i.e., pi is
the leader of round k and pi decides v in k
• This means that, in round k, a majority of

processes have adopted v
• By the algorithm, no value else than v will be

proposed (and hence decided) by any process
in a round higher than k

44

Correctness argument B

p1

pn

n/2

round k round k+1

= leader of that round

v
decide(v)

v
w
w
w

impose v

new

acks

gather

45

Agreement is never violated
• Look at a "totally unreliable" failure detector

(provides no guarantees)
•may always suspect everybody
•may never suspect anybody

• Agreement is not violated
•Can use the same correctness argument as
before
•Termination not ensured (everybody may
be suspected infinitely often)

46

Summary
• (Uniform) Consensus problem is an important

problem to maintain consistency
• Three algorithms:
• I: consensus using P
• II: uniform consensus using P
• III: uniform consensus using <>P and a
correct majority

