Consensus with Byzantine
failures and asynchrony:
the Ben-Or's algorithm, revisited
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Recap



Positive Result: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating crash failures



FLP Theorem: No deterministic
protocol can solve consensus, while
tolerating 1 crash and asynchrony



Today



Positive Result 1: There exists a
randomized asynchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures



Positive Result 2: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures



Consensus

Problem definition



System

Static set of n publicly
known identities

Message passing
through reliable
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Interface of Consensus
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Properties of Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
. Agreement: No two correct processes decide different values.

. Validity: A decided value is proposed by a correct process.
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Asynchronous Model

No notion of time
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Asynchronous Model (Informal)

. No shared global clock: no shared notion of time

. Arbitrary (but finite) message delays

. Modelis purely event-driven: reception — sending

16



Synchronous Model

Known upper bound A on message delays
- rounds of the form compute, send, receive
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Graded Consensus

« Stay safe »
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Graded Consensus

Specification
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Interface of graded consensus
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Interface of graded consensus
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Interface of graded consensus

Propose

X!

22



Interface of graded consensus
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.

Unanimity: If only v is proposed, then only-can be decided.

Consistency (Agreement): ([

24



Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.

Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): ([
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (v, g). We have (S
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (v, ). We have (o) e-¢/<2 (D
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (V/, g’). We have (a) |g-g’|<1, and (b)—.
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g'). We have (a) |g-g’|<1, and (b) if v#V/, then-.
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g'). We have (a) |g-g'|<1, and (b) if vV, then g=g’'=0.
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g’). We have either (i)- or (ii)-, and-.
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g’). We have either (i) g=g'=0 or (ii)-, and-.
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g'). We have either (i) g=g’=0 or (ii) |g-g'|<1, and-.
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g’). We have either (i) g=g’=0 or (ii) |g-g'|<1, and v=V'.
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Consistency + Termination +

g =1 g =0

mazx min

(0, 1) (0,0) (1,0)

() — —O—

Unanimity
g =1
(1, 1)
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Consistency + Termination -+ Unanimity

g =1 g =0 g =1

max min maxr

(0,1) (0,0) (1,0) (1,1)
0 —  O0—— 00— 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). 38



Consistency + Termination -+ Unanimity

g = g =0 g =1

max maamn max

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). 39



Consistency + Termination -+ Unanimity

g = g =0 g =1

max maamn max

(1) If two correct processes decide (v,g) and (V',g’), then either (i) or (ii) |g-g'|<1, and v=V'

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). 40



Consistency + Termination -+ Unanimity

g =1 g =0 g =1

(0,1) (0,0) (1,0) (1,1)

0 g I

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). M



Consistency + Termination -+ Unanimity

g =1 g =0 g =1

(0,1) (0,0) (1,0) (1,1)

0 g I

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g’=0, or (ii)[lg-g’lSl, and v=v’.]

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). 42



Consistency + Termination -+ Unanimity

g =1 g =0 g =1

(0,1) (0,0) (1,0) (1,1)

0 — oo 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). 43



Consistency + Termination -+ Unanimity

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g’|<1, and (b) ([v;tv’ = g=g’=0}). 44




Consistency + Termination -+ Unanimity

9o 9.0 9 .=
(0,1) (0,0) (1,0) (1,1)
0 — o0——0—— 1

All correct processes eventually decide the unanimous proposal with high confidence value.
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Consistency + Termination -+ Unanimity

g = g =0 g =1

maxr min maxr

All correct processes eventually decide the unanimous proposal with high confidence value.
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Graded Consensus

Asynchronous implementation with t<n/? Byzantine failures
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

1
2
3
4
5:
60
7
8
9

: upon propose(v; € Binary Value):

broadcast (PrROPOSAL, 0; )

: upon (PROPOSAL, -) is received from - processes:

broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages.

upon (ECHO, ) is received from -processesz
if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':

else:

trigger decide(v”,1)

trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages.

p#(0') > (n-1t)/2

b #(0°) > (n—1)/2
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from -processesz

60

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from -processesz

60

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

50



Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from -processesr

60

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination:
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast ( PROPOSAL, U; )

upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages.

upon (ECHO, ) is received from -processesr
if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages.

eRpID AL b

p#(0') > (n-1t)/2

b #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

: upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

upon (ECHO, ) is received from -processes:
if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

oD AW e

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message

53



Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

Epon (PROPOSAL, ) is received from F processes: l
: broadcast (EcHO, 0" ), where v" denotes the value with the highest frequency among the prorPosAL messages. p#(0v') > (n-1)/2

1:
2:
3:
4
5: upon (ECHO, -) is received from -processes:
60
7
8
9

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives -PROPOSAL messages.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

upon (PROPOSAL, - ) is received from n — t processes:
broadcast (EcHO, 0" ), where v" denotes the value with the highest frequency among the prorPosAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2:
3
4
5: upon (ECHO, -) is received from -processes:
60
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives (n — t) PROPOSAL messages.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, -) is received from n — t processes:
: broadcast (EcHo, v" )| where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from -processes:
60
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives (n — t) PROPOSAL messages. Consequently, every correct process eventually broadcasts an

ECHO message
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4:

5{ upon (ECHO, -) is received from processes:

6: if Ju € Binary_Value, s.t. at least ECHO messages contain value v’
7:

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives (n — t) PROPOSAL messages. Consequently, every correct process eventually broadcasts an

ECHO message and receives -ECHO messages
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4

5{ upon (ECHO, -) is received from n — t processes:

6: if Ju € Binary_Value, s.t. at least ECHO messages contain value v’
7

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives (n — t) PROPOSAL messages. Consequently, every correct process eventually broadcasts an

ECHO message and receives (n — t) ECHO messages
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if| 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
[trigger decide(v™, 1)}

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9

else:
ltriEEer decide (", 0) Jwhere 0" denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a
PROPOSAL message and receives (n — t) PROPOSAL messages. Consequently, every correct process eventually broadcasts an

ECHO message and receives (n — t) ECHO messages before triggering a decision.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property:
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon|propose(v; € Binary Value)
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, 0; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v.

62



Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon [(PROPOSAL, -) is received from n — ¢ processes:
broadcast (EcHO, 0" ), where v" denotes the value with the highest frequency among the proPosAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages,
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon [(PROPOSAL, -) is received from n — ¢ processes:
broadcast (EcHO, 0" ), where v" denotes the value with the highest frequency among the proPosAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least [(n — 2t) |with value @a.nd at mnstith value[l — o
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

. upon [(PROPOSAL, -) is received from n — ¢ processes:
broadcast (EcHO, 0" ), where ¢" denotes the value with the highest frequency among the proPOsAL messages. p#(0v') > (n-1t)/2

if Jv” € Binary_Value, s.t. at least -ECHD messages contain value v”:
trigger decide(0”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — ¢ processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. p#(0") > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.
Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least [(n — 2t) |with value @a.nd at mnstith value[1 — o] Given that n > 3t,
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon [(PROPOSAL, -) is received from n — ¢ processes:
broadcast (EcHO, 0" ), where v" denotes the value with the highest frequency among the proPosAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.
Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least |(n — 2t) |with value @a.nd at mnstith value|[l — | Given that n > 3¢, we have|(n — 2t) }@ ensuring
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, -) is received from n — f processes:
: broadcast (EcHo, v")) where v” denotes the value with the highest frequency among the PrRoPOSAL messages. >#(0') > (n-1)/2

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

PROOF.
Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at

least |(n — 2t) |with value @a.nd at mnstith value|[l — | Given that n > 3¢, we have|(n — 2t) }@ ensuring that every

correct process broadcasts an ECHO message with value(v.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4

5{ upon (ECHO, -) is received from n — t processes

6: if 30" € Binary_Value, s.t. at least ECHO messages contain value v’
7

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least (n — 2t) with value v and at most t with value 1 — v. Given that n > 3t, we have (n — 2t) > t, ensuring that every

correct process broadcasts an ECHO message with value v. Thus, each correct process receives (n — t) ECHO messages,
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4

5{ upon (ECHO, -) is received from n — t processes

6: if 30" € Binary_Value, s.t. at least ECHO messages contain value v’
7

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at

least (n — 2t) with value v and at most t with value 1 — v. Given that n > 3t, we have (n — 2t) > t, ensuring that every

correct process broadcasts an ECHO message with value v./ Thus, each correct process receives (n — t) ECHO messages,

including at least -with value v,
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4

5{ upon (ECHO, -) is received from n — t processes

6: if 30" € Binary_Value, s.t. at least|n — 2¢ EcHO messages contain value v"':
7

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at

least (n — 2t) with value v and at most t with value 1 — v. Given that n > 3t, we have (n — 2t) > t, ensuring that every

correct process broadcasts an ECHO message with value v./ Thus, each correct process receives (n — t) ECHO messages,

including at least (n — 2t) with value v,
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger'decide{z.r”, 1)

else:

1:
2
3
4
5: upon (ECHO, -) is received from n — t processes:
6
7
8
9

trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least (n — 2t) with value v and at most t with value 1 — v. Given that n > 3t, we have (n — 2t) > t, ensuring that every
correct process broadcasts an ECHO message with value v. Thus, each correct process receives (n — t) ECHO messages,

including at least (n — 2t) with value v, and consequently decides on (v, 1).
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency:
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v”_€ Binary Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”, 1)

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:
6

7

8 else:

9

trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1)
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v”_€ Binary Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”, 1)

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:
6

7

8 else:

9

trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate).
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least'n — 2t ECHO messages contain value v”’§
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have

received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have

received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,

decide on some value (w’, -).
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.
Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have

received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,

decide on some value (w’, -). We aim to show that w’ = w.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least n — 2t ECHO messages contain value v"':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon|(ECHO, -) is received from n — ¢ processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with [Q;| = n — t processes.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Qj| =
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages.

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’

1:
2
3
4
5: upon (ECHO, -) is received from n — t processes:
6
7 trigger decide(v”,1)

8

9

else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. A B

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Q| = |Qi| +|Qj| — |Qi U Qj|
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Qi and Q; is |Qi N Qj| = [Qi| +|Qj| - [QiVQj| = (n—2t) +(n—t) —n
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Q)| = [Qi| +|Qj| - [QiVQj| = (n—2t) + (n—t) —n=n—-3t,

83



Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Qj| = |Qi| +|Qj| = |QiVQj| > (n—2t) +(n—1t) —n=n-3t,s0 |Qi N Qj N Corrects| >
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Qj| = |Qi| +|Qj| = |QiVQj| > (n—2t) +(n—t) —n =n—3t,s0 |Qi N Qj N Corrects| > n — 4t.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.

Therefore, process p; receives at least ECHO messages with value w, which ensures that if
P j g
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that -if _
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that w’ = w if _
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that w’ = wif n — 4t > -
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)

else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that w’ = wifn—4t > (n-1)/2,
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/7: Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)

else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/7-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — ¢t processes. The overlap
between Q; and Q; is |Q; N Qj| = |Qi| +|Qj| = |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that w’ = wifn—4t > (n—1)/2,

ie,ifn > 7t.
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Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/7: Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v; )

: upon (PROPOSAL, - ) is received from n —  processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/7-resiliency.
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One more refinement
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Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Consistency (Agreement): Assume two correct processes decide (v, g)
and (V', g'). We have (a) |g-g'|<1, and (b) if vV, then g=g’=0.

Unanimity: If only v is proposed, then only (v, g.,,4,) €an be decided.
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g =2
g =0
g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1 27;%

0 O—O0—O0—g@—§
55 1

(1) If two corr
ect proce [
sses decide (v,g) and (V',g'), then either (i) 0
g=g'=0, or (ii) |g-g’
g’'|<1,and v=V’

(2) If two corr
ect proc [
esses decide (v,g) and (V,g’), then (a) |g-g’|<1, and
-g'l<1, and (b) (v#V = g=¢’
g=g'=0).
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g =2 =
g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 o—Oo—Oo0—@g—@ —© 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g’=0, or (ii)[lg-g’lSl and v=v’]

(2) If two correct processes decide (v,g) and (V',g’), then (a) |[g-g’|<1, and (b) (v#V = g=g'=0)
: 97



g =2 =
g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 o—o—g—w——o——o 1

(1) If two correct processes decide (v,g) and (V',g'), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'

(2) If two correct processes decide (v,g) and (V',g’), then (a) |[g-g’|<1, and (b) (v#V = g=g'=0)
: 98



g =2 =
g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 o—o—g—w——o——o 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) or (ii) |g-g'|<1, and v=V’

(2) If two correct processes decide (v,g) and (V',g’), then (a) |[g-g’|<1, and (b) (v#V = g=g'=0)
: 99



g =2 g =0 g =2

max man max

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
0 T O —©°o—o—o 1

(1) If two correct processes decide (v,g) and (V',g'), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). 100



g =2 g =0 g =2

max man max

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
0 T O —©°o—o—o 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g’=0, or (ii)[lg-g’lSl, and v=v’.]

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). 101



g =2 g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 e—o—@ O —o0—o 1

(1) If two correct processes decide (v,g) and (V',g'), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0 ). 102



g =2 g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 e—o—@ O —o0—o 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a)||g-g’|<1| and (b) (v#V = g=g’=0 ). 103



Inconsistent !

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a)||g-g’|<1| and (b) (v#V = g=g’=0 ). 104



g =2 g =0 g =2

max man max

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
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All correct processes eventually decide the unanimous proposal with high confidence value. 105



g =2 g =0 g =2

max man max

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
0 @ OO —o0—o—o 1

All correct processes eventually decide the unanimous proposal with high confidence value. 106



- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke G C,.propose(v;)
upon GC,.decide(v}, g; ):

invoke GC g.prnpose{.]
upon GC,.decide(v?, %)

trigger decide(-)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke G C,.propose(v;)
upon GC,.decide(v}, g; ):

invoke GC,.propose(v; )
upon GC,.decide(v?, %)

trigger decide(n?,.)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke G C,.propose(v;)
upon GC,.decide(v}, g; ):

invoke GC,.propose(v; )
upon GC,.decide(v?, %)

trigger decide(ﬂ'ﬁ, gi)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):
invoke G C,.propose(v;)
upon GC,.decide(v}, g;):
gi < gi +g;
invoke GC,.propose(v; )
upon QCg.decide(Uf,gf}:

gi — gi + 4
trigger decide(n?,gf)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value):
invoke GC,.propose(v;) > Propose input value to the 1st graded consensus instance
upon GC, .decide(n} : g% ): > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
gi < gi + gf > Update the grade (confidence)
trigger decide (27, g;) > Decide the final value and grade

LEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = 3.
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

1: Uses:

2: Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

3: Local Variables:

4: Integer g; « 0 > Grade

5: upon propose(v; € Value):

6: invoke GC,.propose(v;) > Propose input value to the 1st graded consensus instance

7: upon GC, .decide(n} : g% ): > Received decision from the 1st graded consensus instance

8: gi «— gi +9; > Update the grade (confidence)

9: invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
10: upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
11: gi < gi + gf > Update the grade (confidence)
12: trigger decide (27, g;) > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = A
PRrooOF.
e Termination follows directly from the termination of GC; and GC5.
112
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

trigger decide(ﬂ'ﬁ, gi)

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value):
invoke GC,.propose(v;) > Propose input value to the 1st graded consensus instance
upon GC, .decide(n} : g% ): > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
gi < gi + gf > Update the grade (confidence)

> Decide the final value and grade

PROOE.

e Termination follows directly from the termination of GC; and GC,.

\_

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e Unanimity property follows directly from the unanimity property of GC; and GC,.

-/
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value):
invoke GC,.propose(v;) > Propose input value to the 1st graded consensus instance
upon GC, .decide(n} : g% ): > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
gi < gi + gf > Update the grade (confidence)
trigger decide (27, g;) > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = A

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value):
invoke G C,.propose(v;) @ \§\ vl.l =w, 1)! > Propose input value to the 1st graded consensus instance
u : 114 _\ . - ,
pon|GC, [decide(v;,g; k = > Received decision from the 1st graded consensus instance
gi —gi+g; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
gi < gi + gf > Update the grade (confidence)
trigger decide (27, g;) > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 1: j = 1.
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

Uses:

Binary Graded Consensus, instances GC,, GC,

Local Variables:
Integer g; < 0

upon propose(v; € Value):

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

invoke G C,.propose(v;) @ ‘U =w, 1)! \’\\ (vl =W *)! > Propose input value to the 1st graded consensus instance
N & O3\ "

upon GC,. demde(n ,g;):

9gi < gi "‘9;

invoke GC,.propose(v; )
upon QCg.decide(Uf,gf}:

gi — gi + 4
trigger decide(n?,gf)

Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

Case 1: j = 1. By consistency,

to GC,.

\_

such j exists, the result is immediate.

each correct process outputs (w, -) from GC, for some value w

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

and thus proposes w

-/
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke GC,.propose(v;) @ \§\ (vll =w, 1)!

Binary Graded Consensus, instances GC,, GC,

upon GC,.decide(v;,9;): ==
gi < gi +9,

upon QCg.decide(Uf,gf}:

invoke GC,.propose(v; ) @ \é w!

gi — gi + 4
trigger decide(n?,gf)

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

(v} = W,*)! > Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance

> Update the grade (confidence)

> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance

> Update the grade (confidence)
> Decide the final value and grade

Case 1: j = 1. By consistency,

to GC,.

\_

such j exists, the result is immediate.

each correct process

outputs (w, -) from GC, for some value w, and thus

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

proposes w

-/

117



- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

Uses:

Binary Graded Consensus, instances GC,, GC,

Local Variables:

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

Integer g; « 0 > Grade
upon propose(v; € Value): @ @

invoke G C,.propose(v;) @ \\ ‘U =w, 1)! (\ == \ \ (v]l — W,*)! > Propose input value to the 1st graded consensus instance

upon GC,. demde(n ,g;): @ > Received decision from the 1st graded consensus instance

gi & gi + 9; %@ | > Update the grade (confidence)
w.

invoke GC,.propose(v; )
upon QCg.decide(vf,gf}:

gi — gi + 4
trigger decide(n?,gf)

> Propose input value to the 2nd graded consensus instance
@ > Received decision from the 2nd graded consensus instance
‘s (‘U* =w, 1)! > Update the grade (confidence)

ﬁ% ! > Decide the final value and grade
S

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 1: j = 1. By consistency, each correct process outputs (w, -) from GC, for some value w, and thus proposes w

to GC,.

Therefore, due to the unanimity property of graded consensus GC,, every correct process returns (w, 1)

from GC>.

\_

-/
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

Uses:

Binary Graded Consensus, instances GC,, GC,

Local Variables:

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

Integer g; « 0 > Grade
upon propose(v; € Value): @ @

invoke G C,.propose(v;) @ \\ ‘U =w, 1)! (\ == \ \ (v]l — W,*)! > Propose input value to the 1st graded consensus instance

upon GC,. demde(n ,g;): @ > Received decision from the 1st graded consensus instance

gi < gi "‘9;

invoke GC,.propose(v; ) % é

upon QCg.decide(Uf,gf}:

gi < gi +9*

| % (vF=w.1)
trigger decide (27, g;) @’

> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

\_

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 1: j = 1. By consistency, each correct process outputs (w, -) from GC, for some value w, and thus proposes w

to GC,. Therefore, due to the unanimity property of graded consensus GC, every correct process returns (w, 1)

from GC>.

Hence, consistency follows directly from the consistency of GC,

-/
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):
invoke G C,.propose(v;)
upon GC,.decide(v}, g;):
gi < gi +9,
invoke GC,.propose(v; )
upnleCg.decide(Uf,gf}:

gi — i + ¢
trigger decide(n?,gf)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

e To prove consistency, let j be th

Case 2: j = 2.

\_

first instance

such j exists, the result is immediate.

f graded consensus where

some process outputs (-, 1) from GC;

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

If no
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

gi = gi+9,

gi < gi +9*

Binary Graded Consensus, instances GC,, GC,

invoke GC,.propose(v;) (_\ \’\ (x,0)!
upnr{ GC,|decide(v;, g;): @v =\

invoke GC,.propose(v; )
upon GC,.decide(v?, %)

trigger decide(ﬂ'f, gi)

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2.

By construction, each correct process outputs (-, 0) from GC;.

\_
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

Uses:

Binary Graded Consensus, instances GC,, GC,

Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke G C,.propose(v;)

gi = gi+9,

invoke GC,.propose(v; )

CD (*,0)!
upnr@ decide(v;, g;): @\\

upon GC,.decide(v?, %) . @ N

gi < gi +9*

‘ & ’ (*,*)!
trigger decide(ﬂf,g;) @ ;\

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

\_

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2.

By construction, each correct process outputs (-, 0) from GC;.
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @v — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(nf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi —gi+9; ‘ ﬁ% \“ (,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-, 0) from GC,.|Therefore, due to the consistency

property of graded consensus GC»,
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @V — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi —gi+9; ‘ ﬁ% \“ (,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-, 0) from GC,.|Therefore, due to the consistency

property of graded consensus GC,, if two correct processes p; and p; decide on (v;, gi) and (v}, gj), respectively, then
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @V — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi —gi+9; ‘ ﬁ% \“ (,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

property of graded consensus GC», if two correct processes p; and p; decide on (v;, gi) and (v}, g;), respectively, then
9i —gjl < 1. )
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @V — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi —gi+9; ‘ ﬁ% \“ (,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

[ property of graded consensus GC», if two correct processes p; and p; decide on (v;, gi) and (v}, g;), respectively, then

lgi — gj| < 1. Moreover,
J
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @v — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi — gi+g° ﬁ% \‘s (*,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

property of graded consensus GC», if two correct processes p; and p; decide on (v, gi) and (v}, g;), respectively, then
lgi — gj| < 1. Moreover, if gi # 0,

J
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @v — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi — gi+g° ﬁ% \‘s (*,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

[ property of graded consensus GC», if two correct processes p; and p; decide on (v, gi) and (v}, g;), respectively, then

|9’:' —gjl < 1. Moreover, ifg,- # 0, vj = vj.
J
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
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: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @v — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v; ) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi — gi+g° ﬁ% \‘s (*,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

[ property of graded consensus GC», if two correct processes p; and p; decide on (v, gi) and (v}, g;), respectively, then

|9i — gj| < 1. Moreover, if gi # 0, v; = v;. This implies consistency.
J
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
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: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):
invoke G C,.propose(v;)
upon GC,.decide(v}, g;):
gi < gi+9;
invoke GC,.propose(v; )
upon QCg.decide(Uf,gf}:

gi < gi +5’f
trigger decide(n?,gf)

Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance

> Decide the final value and grade

> Update the grade (confidence)
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- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =
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: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):
invoke G C,.propose(v;)
upon GC,.decide(v}, g;):
gi < gi+9;
invoke GC,.propose(v; )
upon QCg.decide(Uf,gf}:

gi < gi +5’f
trigger decide(n?,gf)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

Algz
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Common Coin
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Interface of the common coin
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Interface of the common coin

Flip Yield




Interface of the common coin

Flip Yield




Properties of the Common Coin

Termination: All correct processes eventually yield a binary value.

Agreement: All correct processes agree on O (or 1) with probability >O0.
Unpredictability: As soon no correct process has triggered ‘flip’, the

adversary cannot predict the output with probability greater than 1/2.
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A naive implementation of the Common Coin

Algorithm 3 Common Coin

1: upon flip():

2: b 15— {0,1} > Choose either 0 or 1 with probability 1/2
3: trigger yield(b)
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A naive implementation of the Common Coin

Algorithm 3 Common Coin

1: upon flip():

2: b ts— {0,1} > Choose either 0 or 1 with probability 1/2
3: trigger yield(b)

E
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Consensus = Stay safe + Try
(and try again)
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

1: Uses:
2 Binary "Extended" Graded Consensus, instances EGC,, EGC,, ... > oo instances of the Binary Graded Consensus with Refinement R = 3
3: Constants:
4 Integer gpmin < 0
5: Integer gmax < 2
6: Local Variables:
7 Binary_Value est; « 0 > Estimate Value
8 Integer g; < Gmin > Grade (Confidence) in {0, 1,2}
9: Integer attempt < 0

10: Integer halt « oo

11: Boolean decided « false

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (e > Execute instance of extended graded consensus

sti,gi) «— EGC gpempr-propose(est;)
17: if
18: trigger decide( est; > Decide

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCastempt-flip() > Execute instance of common coin
23, if#

24: est; «— b;

25: attempt «— attempt + 1
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

9:
10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

1
2
3
4
5:
6
7
8

: Uses:
Binary "Extended" Graded Consensus, instances EGC,, EGC», ...

: Constants:

Integer gpmin < 0
Integer gmax < 2

: Local Variables:

Binary_Value est; « 0
Integer gi < Gimin
Integer attempt « 0
Integer halt « oo
Boolean decided « false

upon propose(v; € Value):
est; «— v;:
while halt > attempt:

//safety guard
(EStf’ gl) - Sgcﬂﬂempt'Propose( BSfI- )
if §; == gmax N decided = false:
trigger decide(est;)
decided « true
halt « attempt + 1
//try to converge

bi — CC astempt-flip()
i [
est; «— bj

attempt «— attempt + 1

» oo instances of the Binary Graded Consensus with Refinement R = 3

> Estimate Value
> Grade (Confidence) in {0, 1,2}

> Execute instance of extended graded consensus

= Decide

> Halt after the next attempt after having helped the remaining processes to decide

» Execute instance of common coin

142



Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

1: Uses:
2 Binary "Extended" Graded Consensus, instances EGC,, EGC,, ... > oo instances of the Binary Graded Consensus with Refinement R = 3
3: Constants:
4 Integer gpmin < 0
5: Integer gmax < 2
6: Local Variables:
7 Binary_Value est; « 0 > Estimate Value
8 Integer g; < Gmin > Grade (Confidence) in {0, 1,2}
9: Integer attempt < 0
10: Integer halt « oo
11: Boolean decided « false
12: upon propose(v; € Value):
13: est; «— v;:
14: while halt > attempt:
15: //safety guard
16: (est;, 9i) < EGC spemp;-propose (est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:
18: trigger decide(est;) > Decide
19: decided « true
20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge
22: bi « CCattemp:-flip() > Execute instance of common coin
23: if 9; == gmin:
24: est; « b;
25: attempt «— attempt + 1
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCattempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt «— attempt + 1

LEMMA 1.3. If all correct processes begin attempt k with the same estimate value v, they will all decide on v by attempt k and halt

by attempt k + 1.

Proor.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

est; « v;:
while halt > attempt:
//safety guard
(est;, gi) < EGC arrempr-Propose(est;)
if i == gmax A decided = false:
trigger decide(est;)
decided « true
halt « attempt + 1
//try to converge
bf — CCaﬂngr.flip()
if 9i == gmin:
est; «— b;
attempt «— attempt + 1

> Execute instance of extended graded consensus

> Decide

> Halt after the next attempt after having helped the remaining processes to decide

» Execute instance of common coin

LEMMA 1.3. If all correct processes begin attempt k with the same estimate value v, they will all decide on v by attempt k and halt

by attempt k + 1.

Proor. By the unanimity property of EGCy,
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: EGC attemp:-propose(est;) > Execute instance of extended graded consensus
17: if @V\ decided = false:

18: rigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCattempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.3. If all correct processes begin attempt k with the same estimate value v, they will all decide on v by attempt k and halt
by attempt k + 1.

Proor. By the unanimity property of EGC}, all correct processes return (v, gmax) from EGCy.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if|g; == Gmax A decided = false:

18: (trigger decide(est; )] > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.3. If all correct processes begin attempt k with the same estimate value v, they will all decide on v by attempt k and halt
by attempt k + 1.

Proor. By the unanimity property of EGCy, all correct processes return (v, gmax) from EGCy. The rest follows directly from
the protocol. O
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if gi == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided < true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProOF. Let p; be the first correct process to decide, and assume it decides on v at attempt k.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: ard

16: (esti, gi) < EGC gppemp:-propose(est;) > Execute instance of extended graded consensus
17: if| gi == gmax|A decided = false:

18: Tipper decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

Proor. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned

(ﬂ, gmax) from EQCk
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15:

16: > Execute instance of extended graded consensus
17:

18: > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

Proor. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned

(0, gmax) from EGCy. By the consistency property of EGCy., every correct process pj returns (v, g; € {1,2}) from EGCy
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15:

16: > Execute instance of extended graded consensus
17:

18: > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProOF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, 9max) from EGCy. By the consistency property of EGCy, every correct process pj returns (v, g; € {1,2}) from EGCy, updating

its estimate est j tow.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15:

16: > Execute instance of extended graded consensus
17:

18: > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProOF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, 9max) from EGCy. By the consistency property of EGCy, every correct process pj returns (v, g; € {1,2}) from EGCy, updating

its estimate est; to v. Thus, g; > gmin,
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() > Execute instance of common coin
23: [if gi == gmini

24: est; «— b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProOF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, 9max) from EGCy. By the consistency property of EGCy, every correct process pj returns (v, g; € {1,2}) from EGCy, updating

its estimate est; to v. Thus, g; > gmin, so all correct processes ignore the output of CCy and retain est; = v.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
23:

upon propose(v; € Value):
est; «— v;:
while halt > attempt:
//safety guard
(esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
if g; == gmax A decided = false:
trigger decide(est;) > Decide
decided « true
halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

//try to converge
bi — CCartempt-flip() > Execute instance of common coin

if i == gmin:
est; «— b;
attempt «— attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProoF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, gmax) from EGC. By the consistency property of EGCy, every correct process p; returns (v, g; € {1, 2}) from EGCy, updating
its estimate est; to v. Thus, g; > gmin, so all correct processes ignore the output of CCy and retain est; = v. Consequently, all

correct processes begin attempt k + 1 with estimate value v. O

154



Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
23:

upon propose(v; € Value):
est; «— v;:
while halt > attempt:
//safety guard
(esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
if g; == gmax A decided = false:
trigger decide(est;) > Decide
decided « true
halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

//try to converge
bi — CCartempt-flip() > Execute instance of common coin

if i == gmin:
est; «— b;
attempt «— attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProoF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, gmax) from EGC. By the consistency property of EGCy, every correct process p; returns (v, g; € {1, 2}) from EGCy, updating
its estimate est; to v. Thus, g; > gmin, so all correct processes ignore the output of CCy and retain est; = v. Consequently, all

correct processes begin attempt k + 1 with estimate value v. Lemma 1.3 then completes the proof. O
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCattempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt «— attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

ProOF.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — Ccammpr-ﬂip()

23: if 9i == gmin:

24: estj « b;

25: attempt «— attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — Ccammpr-ﬂip()

23: if 9i == gmin:

24: estj « b;

25: attempt «— attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3,
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — Ccammpr-ﬂip()

23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — Ccammpr-ﬂip()

23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCattempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge —

22: bi — CCattempr-flip() €

23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination. Let p; be

the first correct process calling CC for some attempt k.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: )1

15: //safety guard = \\ (b’ gl)

16: (esti, gi) < EGC sptempr-propose(est;) @ _\ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false: -

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge —

22: bi — CCartempt-flip() @ > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination. Let p; be

the first correct process calling CCj for some attempt k. Let (b, g;) the pair returned by p; from EGCy.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: )1

15: //safety guard = \’\ (b’ gl)

16: (esti, gi) < EGC sptempr-propose(est;) @ _\ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false: -

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: Hixy to converge —

22: bi + CCastempt-flip() @ > Execute instance of common coin
23: 117 == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination. Let p; be

the first correct process calling CC}. for some attempt k. Let (b, g;) the pair returned by p; from EGCj.. With non-zero probability

p, all correct processes return b from CCy.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: ’\ (b’ gl] I

15: J'r.l'fSBfEt)" guard —

16: (est;,g;) «— EGC ﬂmr,.,,}M.|:1r«t:\~|:u:)s¢.=:1est,- @ l\ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: Hixy to converge —

22: bi + CCastempt-flip() @ > Execute instance of common coin
23: 179 == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination. Let p; be

the first correct process calling CC}. for some attempt k. Let (b, g;) the pair returned by p; from EGCj.. With non-zero probability

p, all correct processes return b from CCj. We consider two cases depending on the grades obtained by correct processes from

EGC. In both cases, all correct processes start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
23:

est; «— v;:
while halt > attempt: bla:)
//safety guard ’\ ( A

(est, gi) < SQCauemp;-Pr0P0561fos @ l\

Hixy to converge

bi § CCattempr-flip() €&
ity == 9min:
est; «— b;

attempt «— attempt + 1

> Execute instance of extended graded consensus

if g; == gmax A decided = false:
trigger decide(est;) > Decide
decided « true
halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes

start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: N (b, g;)!

15: J'r.l'fSﬂfE:t)" guard — \’ .

16: (esti, gi) < EGC sptempr-propose(est;) @ _\ \ (b 9i > Gmin)! > Execute instance of extended graded consensus
17: if g; == gmax A decided = false: . \‘\ = minj-

18: trigger decide(est;) @ — > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge —

22: bi — CCartempt-flip() @ > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes
start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case

dp; € Correct,gj > gminf
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ (b, gi)!

15: Hsafetyguaﬁ — \’ .

16: (est;,g;) « SQCﬂmmpt]pmpose(est,-) @ _\ \ (b 9i > Gmin)! > Execute instance of extended graded consensus
17: if g; == gmax A decided = false: . \‘\ = minj-

18: trigger decide(est;) @ — > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge —

22: bi — CCartempt-flip() @ > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes

start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case|dp; € Correct,gj > gmin]: By EGCL’s consistency,
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ (b, g;)!

15: guard

16: (est,,;,) — EGC strempe-propose (est; ) @ \\ (b S _ )'
17: if g; == gmax A decided = false: @ \\ ) g] Imin):
18: trigger decide(est;) — \ (b *)

19: decided « true ’

20: halt « attempt + 1 % \ > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempr-flip() @)

23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes

start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case(dp; € Correct,g; > gm,-n]: By EGC}’s consistency, (a) all processes return (b, -) from EGCy.,

169



Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ ! i)!

15: guard

16: (est;, §i) < EGC sptempr-propose(est;) @ \ b, > Execute instance of extended graded consensus
- - N (D, gj > Gmin)!

17: if g; == gmax A decided = false: \‘ J

18: trigger decide(est;) — \ (b *)| @ _\ > Decide

19: decided « true \‘

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

21: to converge

22: CC‘am,ﬂpf flip() @ > Execute instance of common coin

23: If gi =

24: est, «— b;

25: attempt « attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying
graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes
start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case|dp; € Correct,g; > gmin]: By EGC}’s consistency, (a) all processes return (b, -) from EGCy, so they will all have the

same estimate value at attempt k + 1, either by adopting CCy’s output or by retaining the value from EGCy.
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; « v;:
14: while halt > attempt: ’\ l)

15: guard

16: (est;, ;:) — SQCﬂﬂmﬂ.proposellesth @ s (b gi>g ) > Execute instance of extended graded consensus
17: if i == Gmax A decided = false: \0 J min

18: trigger decide(est;) ’\ (b *)| @ _\ > Decide
19: decided « true &)

20: halt « attempt + 1 % \ > Halt after the next attempt after having helped the remaining processes to decide
21: to converge

22: ﬁ CC‘am,ﬂpf flip() @ > Execute instance of common coin
23: if g; =

24: est, «— b;

25: attempt « attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes

start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case|dp; € Correct,g; > gmin]: By EGC}’s consistency, (a) all processes return (b, -) from EGCy, so they will all have the

same estimate value at attempt k + 1, either by adopting CCy’s output or by retaining the value from EGCy.

171



Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ (b, g;)!

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) @ \\ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) \(* O) > Decide
19: decided « true &) ’

20: halt « attempt + 1 % > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() @ > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes
start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case Jp; € Correct,g; > gmin: By EGCy’s consistency, (a) all processes return (b, -) from EGCy, so they will all have the

same estimate value at attempt k + 1, either by adopting CC}’s output or by retaining the value from EGCy.

- Case

Vp;j € Correct,gj = gmin:
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ (b,g;)!

15: //safety guard

16: (esti, gi) < EGC sptemps-propose [l est; | @ \ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) \ (* )| > Decide
19: decided « true &) ’ » Gmin

20: halt « attempt + 1 % > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi + CCastempt-flip() @ > Execute instance of common coin
23: it gi == gmin:

24: est;j « b;

25: attempt « attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes
start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case Jp; € Correct,g; > gmin: By EGCy’s consistency, (a) all processes return (b, -) from EGCy, so they will all have the

same estimate value at attempt k + 1, either by adopting CC}’s output or by retaining the value from EGCy.

- Case

processes.

Vp;j € Correct,gj = gmin!

All processes adopt the value provided by the common coin, which is identical across
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):
est; «— v;:
while halt > attempt:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

//safety guard
(e‘“i’ 91) — Sgcﬂﬂempt'prﬂpnse(e-ﬂi)
if i == gmax A decided = false:
trigger decide(est;)
decided « true

> Execute instance of extended graded consensus

> Decide

halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

//try to converge
bi « CCattempt-flip()
if gi == gmin:

est; « b;

attempt «— attempt + 1

> Execute instance of common coin
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Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):
est; «— v;:
while halt > attempt:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

//safety guard
('E-Hi: 9;) — Sgcaﬂempt'prﬂpnse(esn)
if g; == gmax A decided = false:

> Execute instance of extended graded consensus

trigger decide(est;) > Decide
decided « true
halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

//try to converge
bi — CCartempt-flip()
if gi == gmin:

est; «— b;
attempt « attempt + 1

&> Execute instance of common coin

r
N ﬁﬂ ...ﬁﬁﬁ
\
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J
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Positive Result 1: There exists a
randomized asynchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures



A general perspective
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Safety Guards
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Convergence under good circumstances
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Convergence under good circumstances

Luckyness via a common coin
Eventual Synchrony + Synchronization

Unreliable Failure Detectors
Fair scheduling / Noisy Environement

Synchrony + round-robin rotating leader
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Positive Result 2: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures
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