
Consensus with Byzantine
failures and asynchrony:

the Ben-Or’s algorithm, revisited

Distributed Algorithms

Recap

2

Positive Result: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating crash failures

3

FLP Theorem: No deterministic
protocol can solve consensus, while
tolerating 1 crash and asynchrony

4

Today

5

Positive Result 1: There exists a
randomized asynchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures

6

Positive Result 2: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures

7

Consensus

Problem definition

8

9

System

𝒏 processes

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃8

Static set of n publicly
known identities

Message passing
through reliable
point-to-point
channels

10

System

up to 𝒕 Byzantine
𝒏 processes

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃8

Static set of n publicly
known identities

Message passing
through reliable
authenticated point-
to-point channels

Interface of Consensus

Propose
Operation

11

Decide
Callback

Propose
Operation

12

Decide
Callback

x!

Interface of Consensus

Propose
Operation

13

Decide
Callback

x! y!

Interface of Consensus

Properties of Consensus

14

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Agreement: No two correct processes decide different values.

● Validity: A decided value is proposed by a correct process.

Asynchronous Model

15

No notion of time

Asynchronous Model (Informal)

16

● No shared global clock: no shared notion of time

● Arbitrary (but finite) message delays

● Model is purely event-driven: reception → sending

Synchronous Model

17

Known upper bound ∆ on message delays
→ rounds of the form compute, send, receive

Graded Consensus

18

« Stay safe »

Graded Consensus

19

Specification

Interface of graded consensus

Propose
Operation

20

Decide
Callback

Propose
Operation

21

Decide
Callback

x!

Interface of graded consensus

Propose
Operation

22

Decide
Callback

x! (y,g)!

Interface of graded consensus

Propose
Operation

23

Decide
Callback

x! (y,g)!

Interface of graded consensus

Grade =

‘confidence’

𝑔𝑚𝑖𝑛, … , 𝑔𝑚𝑎𝑥

Properties of Graded Consensus

24

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v,g)

and (v’g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

Properties of Graded Consensus

25

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v,g)

and (v’g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

Properties of Graded Consensus

26

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

Properties of Graded Consensus

27

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

Properties of Graded Consensus

28

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

Properties of Graded Consensus

29

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

Properties of Graded Consensus

30

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

Properties of Graded Consensus

31

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

Properties of Graded Consensus

32

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have either (i) g=g’=0 or (ii) |g-g’|≤1, and v=v.

Properties of Graded Consensus

33

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have either (i) g=g’=0 or (ii) |g-g’|≤1, and v=v.

Properties of Graded Consensus

34

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have either (i) g=g’=0 or (ii) |g-g’|≤1, and v=v.

Properties of Graded Consensus

35

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have either (i) g=g’=0 or (ii) |g-g’|≤1, and v=v’.

36

37

Consistency +Termination UnanimityConsistency +

38

Consistency +Termination UnanimityConsistency +

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

39

Termination UnanimityConsistency + +

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

40

Termination UnanimityConsistency + +

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

41

Termination UnanimityConsistency + +

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

42

Termination UnanimityConsistency + +

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

43

Termination UnanimityConsistency + +

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

44

Termination UnanimityConsistency + +

Inconsistent !

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

45

Termination UnanimityConsistency + +

Unanimously proposed

All correct processes eventually decide the unanimous proposal with high confidence value.

46

Termination UnanimityConsistency + +

All correct processes eventually decide the unanimous proposal with high confidence value.

Unanimously proposed

Graded Consensus

47

Asynchronous implementation with t<n/? Byzantine failures

48

XX

49

X

X

X

50

X

X

X

51

X

X

52

X

X

53

X

X

54

X

X

55

X

X

56

X

X

57

X

X

58

X

X

59

X

X

60

X

X

XX

61

X

X

XX

62

X

X

XX

63

X

X

XX

64

X

X

XX

65

X

X

XX

66

X

X

XX

67

X

X

XX

68

X

X

XX

69

X

X

XX

70

X

X

XX

71

X

X

XX

72

X

X

XX

XX

73

X

74

X

X

75

X

X

76

X

X

X

77

X

X

X

78

X

X

X

79

X

X

80

X

X

X

81

X

X

X

82

X

X

X

83

X

X

X

84

X

X

X

85

X

X

X

86

X

X

X

87

X

X

X

88

X

X

X

89

X

X

X

90

X

X

X

91

X

92

X

𝐴𝑙𝑔1 𝐺𝐶𝑅=2⊑

One more refinement

93

Properties of Graded Consensus

94

● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Consistency (Agreement): Assume two correct processes decide (v, g)

and (v’, g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

95

96(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

97(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

98(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

99(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

100(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

101(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

102(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

103(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

104(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) (v≠v’ ⟹ g=g’=0).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and v=v’.

Inconsistent !

105

Unanimously proposed

All correct processes eventually decide the unanimous proposal with high confidence value.

106

Unanimously proposed

All correct processes eventually decide the unanimous proposal with high confidence value.

107

108

109

110

111

112

113

114

115

𝒗𝒊
𝟏 = 𝒘, 𝟏 !

1

116

𝒗𝒊
𝟏 = 𝒘, 𝟏 ! 𝒗𝒋

𝟏 = 𝒘,∗ !
1 1

117

𝒗𝒊
𝟏 = 𝒘, 𝟏 ! 𝒗𝒋

𝟏 = 𝒘,∗ !

𝒘!

1

2

1

118

𝒗𝒊
𝟏 = 𝒘, 𝟏 ! 𝒗𝒋

𝟏 = 𝒘,∗ !

𝒘!

𝒗∗
𝟐 = 𝒘, 𝟏 !

1

2

1

2

119

𝒗𝒊
𝟏 = 𝒘, 𝟏 ! 𝒗𝒋

𝟏 = 𝒘,∗ !

𝒘!

𝒗∗
𝟐 = 𝒘, 𝟏 !

1

2

1

2

120

121

∗, 𝟎 !
1

122

∗, 𝟎 !
1

(∗,∗)!
2

123

∗, 𝟎 !

(∗,∗)!

1

2

124

∗, 𝟎 !

(∗,∗)!

1

2

125

∗, 𝟎 !

(∗,∗)!

1

2

126

∗, 𝟎 !

(∗,∗)!

1

2

127

∗, 𝟎 !

(∗,∗)!

1

2

128

∗, 𝟎 !

(∗,∗)!

1

2

129

∗, 𝟎 !

(∗,∗)!

1

2

130

𝐴𝑙𝑔2 𝐺𝐶𝑅=2= ⊑ 𝐺𝐶𝑅=3𝐺𝐶𝑅=2⊳

131

𝐴𝑙𝑔2 𝐺𝐶𝑅=2= ⊑ 𝐺𝐶𝑅=3𝐺𝐶𝑅=2⊳

𝐴𝑙𝑔2 ⊑ 𝐺𝐶𝑅=3

Common Coin

132

Flip
Operation

133

Yield
Callback

Interface of the common coin

Flip
Operation

134

Yield
Callback

Interface of the common coin

∅

Flip
Operation

135

Yield
Callback

Interface of the common coin

v!∅

Properties of the Common Coin

136

● Termination: All correct processes eventually yield a binary value.

● Agreement: All correct processes agree on 0 (or 1) with probability >0.

● Unpredictability: As soon no correct process has triggered ‘flip’, the

adversary cannot predict the output with probability greater than 1/2.

A naive implementation of the Common Coin

137

A naive implementation of the Common Coin

138

𝐴𝑙𝑔3 ⊑ 𝐶𝐶

Consensus = Stay safe + Try
(and try again)

139

140

𝐶𝐶𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝐶𝐶𝐺𝐶𝑅=3 ⟶ ⟶… …

141

≥

142

≥

143

≥

144

≥

145

≥

146

≥

147

≥

148

≥

149

≥

150

≥

151

≥

152

≥≥

153

≥

154

≥

155

≥

156

≥

157

≥

158

≥

159

≥

160

≥

161

≥

162

≥

163

≥ 𝒃, 𝒈𝒊 !

164

≥ 𝒃, 𝒈𝒊 !

165

≥ 𝒃, 𝒈𝒊 !

166

≥ 𝒃, 𝒈𝒊 !

167

≥ 𝒃, 𝒈𝒊 !

𝒃, 𝒈𝒋 > 𝒈𝒎𝒊𝒏 !

168

≥ 𝒃, 𝒈𝒊 !

𝒃, 𝒈𝒋 > 𝒈𝒎𝒊𝒏 !

169

≥ 𝒃, 𝒈𝒊 !

𝒃, 𝒈𝒋 > 𝒈𝒎𝒊𝒏 !

𝒃,∗ !

170

≥ 𝒃, 𝒈𝒊 !

𝒃, 𝒈𝒋 > 𝒈𝒎𝒊𝒏 !

𝒃,∗ !

171

≥ 𝒃, 𝒈𝒊 !

𝒃, 𝒈𝒋 > 𝒈𝒎𝒊𝒏 !

𝒃,∗ !

172

≥ 𝒃, 𝒈𝒊 !

∗, 𝟎 !

173

≥ 𝒃, 𝒈𝒊 !

∗, 𝒈𝒎𝒊𝒏 !

174

𝐶𝐶𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝐶𝐶𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔4 ⊑ 𝐵𝐴=

≥

175

𝐶𝐶𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝐶𝐶𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔4 ⊑ 𝐵𝐴=

𝐺𝐶𝑅=2 ⊑ 𝐺𝐶𝑅=3𝐺𝐶𝑅=2⊳

≥

Positive Result 1: There exists a
randomized asynchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures

176

A general perspective

177

178

𝐶𝐶𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝐶𝐶𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔4 ⊑ 𝐵𝐴=

179

𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

180

𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Safety Guards

181

𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Safety Guards

Convergence under good circumstances

182

𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Safety Guards

Convergence under good circumstances

Luckyness via a common coin

183

𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Safety Guards

Convergence under good circumstances

Eventual Synchrony + Synchronization

Luckyness via a common coin

184

𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Safety Guards

Convergence under good circumstances

Unreliable Failure Detectors

Luckyness via a common coin

Eventual Synchrony + Synchronization

185

𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Safety Guards

Convergence under good circumstances

Unreliable Failure Detectors

Luckyness via a common coin

Fair scheduling / Noisy Environement

Eventual Synchrony + Synchronization

186

𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Safety Guards

Convergence under good circumstances

Synchrony + round-robin rotating leader

Unreliable Failure Detectors

Luckyness via a common coin

Fair scheduling / Noisy Environement

Eventual Synchrony + Synchronization

187

𝐿𝑖𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝐿𝑗𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Correct Leader

Synchrony

Positive Result 2: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures

188

189

	Slide 1: Consensus with Byzantine failures and asynchrony: the Ben-Or’s algorithm, revisited
	Slide 2: Recap
	Slide 3: Positive Result: There exists a deterministic synchronous protocol that solves consensus, while tolerating crash failures
	Slide 4: FLP Theorem: No deterministic protocol can solve consensus, while tolerating 1 crash and asynchrony
	Slide 5: Today
	Slide 6: Positive Result 1: There exists a randomized asynchronous protocol that solves consensus, while tolerating arbitrary (Byzantine) failures
	Slide 7: Positive Result 2: There exists a deterministic synchronous protocol that solves consensus, while tolerating arbitrary (Byzantine) failures
	Slide 8: Consensus
	Slide 9: System
	Slide 10: System
	Slide 11: Interface of Consensus
	Slide 12: Interface of Consensus
	Slide 13: Interface of Consensus
	Slide 14: Properties of Consensus
	Slide 15: Asynchronous Model
	Slide 16: Asynchronous Model (Informal)
	Slide 17: Synchronous Model
	Slide 18: Graded Consensus
	Slide 19: Graded Consensus
	Slide 20: Interface of graded consensus
	Slide 21: Interface of graded consensus
	Slide 22: Interface of graded consensus
	Slide 23: Interface of graded consensus
	Slide 24: Properties of Graded Consensus
	Slide 25: Properties of Graded Consensus
	Slide 26: Properties of Graded Consensus
	Slide 27: Properties of Graded Consensus
	Slide 28: Properties of Graded Consensus
	Slide 29: Properties of Graded Consensus
	Slide 30: Properties of Graded Consensus
	Slide 31: Properties of Graded Consensus
	Slide 32: Properties of Graded Consensus
	Slide 33: Properties of Graded Consensus
	Slide 34: Properties of Graded Consensus
	Slide 35: Properties of Graded Consensus
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Graded Consensus
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: One more refinement
	Slide 94: Properties of Graded Consensus
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132: Common Coin
	Slide 133: Interface of the common coin
	Slide 134: Interface of the common coin
	Slide 135: Interface of the common coin
	Slide 136: Properties of the Common Coin
	Slide 137: A naive implementation of the Common Coin
	Slide 138: A naive implementation of the Common Coin
	Slide 139: Consensus = Stay safe + Try (and try again)
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176: Positive Result 1: There exists a randomized asynchronous protocol that solves consensus, while tolerating arbitrary (Byzantine) failures
	Slide 177: A general perspective
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188: Positive Result 2: There exists a deterministic synchronous protocol that solves consensus, while tolerating arbitrary (Byzantine) failures
	Slide 189

