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Positive Result: There exists a 
deterministic synchronous protocol
that solves consensus, while
tolerating crash failures
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FLP Theorem: No deterministic
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tolerating 1 crash and  asynchrony
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Positive Result 1: There exists a 
randomized asynchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures
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Positive Result 2: There exists a 
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that solves consensus, while
tolerating arbitrary (Byzantine) failures
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Properties of Consensus
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● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Agreement: No two correct processes decide different values.

● Validity: A decided value is proposed by a correct process.



Asynchronous Model
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No notion of time



Asynchronous Model (Informal)
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● No shared global clock: no shared notion of time

● Arbitrary (but finite) message delays

● Model is purely event-driven: reception → sending



Synchronous Model
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Known upper bound  ∆ on message delays 
→ rounds of the form compute, send, receive



Graded Consensus
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« Stay safe »



Graded Consensus
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Properties of Graded Consensus
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● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.

● Consistency (Agreement): Assume two correct processes decide (v,g) 

and (v’g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.
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Consistency +Termination        UnanimityConsistency +

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) ( v≠v’ ⟹ g=g’=0 ).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and  v=v’.
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Termination        UnanimityConsistency + +

Inconsistent !

(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) ( v≠v’ ⟹ g=g’=0 ).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and  v=v’.
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Termination        UnanimityConsistency + +

Unanimously proposed

All correct processes eventually decide the unanimous proposal with high confidence value.
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Termination        UnanimityConsistency + +

All correct processes eventually decide the unanimous proposal with high confidence value.

Unanimously proposed



Graded Consensus
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Asynchronous implementation with t<n/? Byzantine failures
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One more refinement
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Properties of Graded Consensus
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● Termination: All correct processes decide.

● Integrity: No process decides more than once.

● Consistency (Agreement): Assume two correct processes decide (v, g) 

and (v’, g’). We have (a) |g-g’|≤1, and (b) if v≠v’, then g=g’=0.

● Unanimity: If only v is proposed, then only (v, 𝑔𝑚𝑎𝑥) can be decided.
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96(2) If two correct processes decide (v,g) and (v’,g’), then (a) |g-g’|≤1, and (b) ( v≠v’ ⟹ g=g’=0 ).

(1) If two correct processes decide (v,g) and (v’,g’), then either (i) g=g’=0, or (ii) |g-g’|≤1, and  v=v’.
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Unanimously proposed

All correct processes eventually decide the unanimous proposal with high confidence value.
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Unanimously proposed

All correct processes eventually decide the unanimous proposal with high confidence value.
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𝐴𝑙𝑔2 𝐺𝐶𝑅=2= ⊑ 𝐺𝐶𝑅=3𝐺𝐶𝑅=2⊳



131
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Yield
Callback

Interface of the common coin
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Yield
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Interface of the common coin
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Yield
Callback

Interface of the common coin

v!∅



Properties of the Common Coin
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● Termination: All correct processes eventually yield a binary value.

● Agreement: All correct processes agree on 0 (or 1) with probability >0.

● Unpredictability: As soon no correct process has triggered ‘flip’, the 

adversary cannot predict the output with probability greater than 1/2.



A naive implementation of the Common Coin

137



A naive implementation of the Common Coin
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𝐴𝑙𝑔3 ⊑ 𝐶𝐶



Consensus = Stay safe + Try 
(and try again)
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Positive Result 1: There exists a 
randomized asynchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures
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𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝑇𝑟𝑦𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Safety Guards

Convergence under good circumstances

Synchrony + round-robin rotating leader

Unreliable Failure Detectors

Luckyness via a common coin

Fair scheduling / Noisy Environement

Eventual Synchrony + Synchronization
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𝐿𝑖𝐺𝐶𝑅=3 ⟶ ⟶ ⟶ 𝐿𝑗𝐺𝐶𝑅=3 ⟶ ⟶… …𝐴𝑙𝑔′ ⊑ 𝐵𝐴=

Correct Leader

Synchrony



Positive Result 2: There exists a 
deterministic synchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures
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