Consensus with Byzantine
failures and asynchrony:
the Ben-Or's algorithm, revisited

Distributed Algorithms

Recap

Positive Result: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating crash failures

FLP Theorem: No deterministic
protocol can solve consensus, while
tolerating 1 crash and asynchrony

Today

Positive Result 1: There exists a
randomized asynchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures

Positive Result 2: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures

Consensus

Problem definition

System

Static set of n publicly
known identities

Message passing
through reliable
point-to-point
channels

- J

System

Static set of n publicly
known identities

Message passing
through reliable
authenticated point-

@ n processes g to-point channels

7 up to t Byzantine *

Interface of Consensus

Propose Decide

& KN

11

Interface of Consensus

Propose Decide

\éx! g\\

12

Interface of Consensus

Propose Decide

x! g\\y!

Properties of Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
. Agreement: No two correct processes decide different values.

. Validity: A decided value is proposed by a correct process.

14

Asynchronous Model

No notion of time

15

Asynchronous Model (Informal)

. No shared global clock: no shared notion of time

. Arbitrary (but finite) message delays

. Modelis purely event-driven: reception — sending

16

Synchronous Model

Known upper bound A on message delays
- rounds of the form compute, send, receive

v

Graded Consensus

« Stay safe »

18

Graded Consensus

Specification

19

Interface of graded consensus

Propose Decide

& KN

20

Interface of graded consensus

Propose Decide

\éx! g\\

21

Interface of graded consensus

Propose

X!

22

Interface of graded consensus

Propose

X!

-

Grade =

‘confidence’

g

Imins - Imax

~

J

23

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.

Unanimity: If only v is proposed, then only-can be decided.

Consistency (Agreement): ([

24

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.

Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): ([

25

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (v, g). We have (S

26

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (v,). We have (o) e-¢/<(D

27

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (v,). We have (o) e-¢/<2 (D

28

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (V/, g’). We have (a) |g-g’|<1, and (b)—.

29

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g'). We have (a) |g-g’|<1, and (b) if v#V/, then-.

30

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g'). We have (a) |g-g'|<1, and (b) if vV, then g=g’'=0.

31

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g’). We have either (i)- or (ii)-, and-.

32

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.

Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g’). We have either (i) g=g'=0 or (ii)-, and-.

33

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g'). We have either (i) g=g’=0 or (ii) |g-g'|<1, and-.

34

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Unanimity: If only v is proposed, then only (v, g.,,4,) Can be decided.
Consistency (Agreement): Assume two correct processes decide (v, g)

and (V', g’). We have either (i) g=g’=0 or (ii) |g-g'|<1, and v=V'.

35

36

Consistency + Termination +

g =1 g =0

mazx min

(0, 1) (0,0) (1,0)

() — —O—

Unanimity
g =1
(1, 1)

37

Consistency + Termination -+ Unanimity

g =1 g =0 g =1

max min maxr

(0,1) (0,0) (1,0) (1,1)
0 — O0—— 00— 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). 38

Consistency + Termination -+ Unanimity

g = g =0 g =1

max maamn max

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). 39

Consistency + Termination -+ Unanimity

g = g =0 g =1

max maamn max

(1) If two correct processes decide (v,g) and (V',g’), then either (i) or (ii) |g-g'|<1, and v=V'

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). 40

Consistency + Termination -+ Unanimity

g =1 g =0 g =1

(0,1) (0,0) (1,0) (1,1)

0 g I

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). M

Consistency + Termination -+ Unanimity

g =1 g =0 g =1

(0,1) (0,0) (1,0) (1,1)

0 g I

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g’=0, or (ii)[lg-g’lSl, and v=v’.]

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). 42

Consistency + Termination -+ Unanimity

g =1 g =0 g =1

(0,1) (0,0) (1,0) (1,1)

0 — oo 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). 43

Consistency + Termination -+ Unanimity

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g’|<1, and (b) ([v;tv’ = g=g’=0}). 44

Consistency + Termination -+ Unanimity

9o 9.0 9 .=
(0,1) (0,0) (1,0) (1,1)
0 — o0——0—— 1

All correct processes eventually decide the unanimous proposal with high confidence value.

45

Consistency + Termination -+ Unanimity

g = g =0 g =1

maxr min maxr

All correct processes eventually decide the unanimous proposal with high confidence value.

46

Graded Consensus

Asynchronous implementation with t<n/? Byzantine failures

47

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

1
2
3
4
5:
60
7
8
9

: upon propose(v; € Binary Value):

broadcast (PrROPOSAL, 0;)

: upon (PROPOSAL, -) is received from - processes:

broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages.

upon (ECHO,) is received from -processesz
if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':

else:

trigger decide(v”,1)

trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages.

p#(0') > (n-1t)/2

b #(0°) > (n—1)/2

48

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from -processesz

60

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

49

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from -processesz

60

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

50

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from -processesr

60

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination:

51

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, U;)

upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages.

upon (ECHO,) is received from -processesr
if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages.

eRpID AL b

p#(0') > (n-1t)/2

b #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal.

52

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

: upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

upon (PROPOSAL, -) is received from - processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

upon (ECHO,) is received from -processes:
if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

oD AW e

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message

53

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

Epon (PROPOSAL,) is received from F processes: l
: broadcast (EcHO, 0"), where v" denotes the value with the highest frequency among the prorPosAL messages. p#(0v') > (n-1)/2

1:
2:
3:
4
5: upon (ECHO, -) is received from -processes:
60
7
8
9

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives -PROPOSAL messages.

54

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

upon (PROPOSAL, -) is received from n — t processes:
broadcast (EcHO, 0"), where v" denotes the value with the highest frequency among the prorPosAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2:
3
4
5: upon (ECHO, -) is received from -processes:
60
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives (n — t) PROPOSAL messages.

55

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — t processes:
: broadcast (EcHo, v")| where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from -processes:
60
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives (n — t) PROPOSAL messages. Consequently, every correct process eventually broadcasts an

ECHO message

56

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4:

5{ upon (ECHO, -) is received from processes:

6: if Ju € Binary_Value, s.t. at least ECHO messages contain value v’
7:

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives (n — t) PROPOSAL messages. Consequently, every correct process eventually broadcasts an

ECHO message and receives -ECHO messages

57

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4

5{ upon (ECHO, -) is received from n — t processes:

6: if Ju € Binary_Value, s.t. at least ECHO messages contain value v’
7

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a

PROPOSAL message and receives (n — t) PROPOSAL messages. Consequently, every correct process eventually broadcasts an

ECHO message and receives (n — t) ECHO messages

58

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if| 3v” € Binary_Value, s.t. at least -ECHO messages contain value v”':
[trigger decide(v™, 1)}

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9

else:
ltriEEer decide (", 0) Jwhere 0" denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.

Termination: Every correct process eventually triggers a proposal. Thus, every correct process eventually broadcasts a
PROPOSAL message and receives (n — t) PROPOSAL messages. Consequently, every correct process eventually broadcasts an

ECHO message and receives (n — t) ECHO messages before triggering a decision.

59

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property:

60

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon|propose(v; € Binary Value)
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v.

61

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, 0;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v.

62

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon [(PROPOSAL, -) is received from n — ¢ processes:
broadcast (EcHO, 0"), where v" denotes the value with the highest frequency among the proPosAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages,

63

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon [(PROPOSAL, -) is received from n — ¢ processes:
broadcast (EcHO, 0"), where v" denotes the value with the highest frequency among the proPosAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least [(n — 2t) |with value @a.nd at mnstith value[l — o

64

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

. upon [(PROPOSAL, -) is received from n — ¢ processes:
broadcast (EcHO, 0"), where ¢" denotes the value with the highest frequency among the proPOsAL messages. p#(0v') > (n-1t)/2

if Jv” € Binary_Value, s.t. at least -ECHD messages contain value v”:
trigger decide(0”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — ¢ processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. p#(0") > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.
Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least [(n — 2t) |with value @a.nd at mnstith value[1 — o] Given that n > 3t,

65

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon [(PROPOSAL, -) is received from n — ¢ processes:
broadcast (EcHO, 0"), where v" denotes the value with the highest frequency among the proPosAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.
Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a

PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least |(n — 2t) |with value @a.nd at mnstith value|[l — | Given that n > 3¢, we have|(n — 2t) }@ ensuring

66

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — f processes:
: broadcast (EcHo, v")) where v” denotes the value with the highest frequency among the PrRoPOSAL messages. >#(0') > (n-1)/2

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9

if 30" € Binary_Value, s.t. at least -ECHO messages contain value v”':
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

PROOF.
Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at

least |(n — 2t) |with value @a.nd at mnstith value|[l — | Given that n > 3¢, we have|(n — 2t) }@ ensuring that every

correct process broadcasts an ECHO message with value(v.

67

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4

5{ upon (ECHO, -) is received from n — t processes

6: if 30" € Binary_Value, s.t. at least ECHO messages contain value v’
7

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least (n — 2t) with value v and at most t with value 1 — v. Given that n > 3t, we have (n — 2t) > t, ensuring that every

correct process broadcasts an ECHO message with value v. Thus, each correct process receives (n — t) ECHO messages,

68

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4

5{ upon (ECHO, -) is received from n — t processes

6: if 30" € Binary_Value, s.t. at least ECHO messages contain value v’
7

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at

least (n — 2t) with value v and at most t with value 1 — v. Given that n > 3t, we have (n — 2t) > t, ensuring that every

correct process broadcasts an ECHO message with value v./ Thus, each correct process receives (n — t) ECHO messages,

including at least -with value v,

69

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

1:

2

3

4

5{ upon (ECHO, -) is received from n — t processes

6: if 30" € Binary_Value, s.t. at least|n — 2¢ EcHO messages contain value v"':
7

8

9

trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at

least (n — 2t) with value v and at most t with value 1 — v. Given that n > 3t, we have (n — 2t) > t, ensuring that every

correct process broadcasts an ECHO message with value v./ Thus, each correct process receives (n — t) ECHO messages,

including at least (n — 2t) with value v,

70

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger'decide{z.r”, 1)

else:

1:
2
3
4
5: upon (ECHO, -) is received from n — t processes:
6
7
8
9

trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Unanimity Property: Suppose all correct processes propose the same value v. Then, each correct process broadcasts a
PROPOSAL message with value v. Consequently, each process eventually receives (n — t) PROPOSAL messages, including at
least (n — 2t) with value v and at most t with value 1 — v. Given that n > 3t, we have (n — 2t) > t, ensuring that every
correct process broadcasts an ECHO message with value v. Thus, each correct process receives (n — t) ECHO messages,

including at least (n — 2t) with value v, and consequently decides on (v, 1).

71

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency:

72

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v”_€ Binary Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”, 1)

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:
6

7

8 else:

9

trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1)

73

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v”_€ Binary Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”, 1)

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:
6

7

8 else:

9

trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate).

74

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least'n — 2t ECHO messages contain value v”’§
trigger decide(v”,1)
else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

1:
2
3
4
5: upon (ECHO, -) is received from n — f processes:
6
7
8
9

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have

received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes.

75

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have

received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,

76

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,

decide on some value (w’, -).

77

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.
Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have

received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,

decide on some value (w’, -). We aim to show that w’ = w.

78

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 30" € Binary_Value, s.t. at least n — 2t ECHO messages contain value v"':
trigger decide(v”,1)
else:

1:
2
3
4
5: upon|(ECHO, -) is received from n — ¢ processes:
6
7
8
9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with [Q;| = n — t processes.

79

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Qj| =

80

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages.

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’

1:
2
3
4
5: upon (ECHO, -) is received from n — t processes:
6
7 trigger decide(v”,1)

8

9

else:
trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. A B

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Q| = |Qi| +|Qj| — |Qi U Qj|

81

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Qi and Q; is |Qi N Qj| = [Qi| +|Qj| - [QiVQj| = (n—2t) +(n—t) —n

82

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Q)| = [Qi| +|Qj| - [QiVQj| = (n—2t) + (n—t) —n=n—-3t,

83

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Qj| = |Qi| +|Qj| = |QiVQj| > (n—2t) +(n—1t) —n=n-3t,s0 |Qi N Qj N Corrects| >

84

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — t processes. The overlap

between Q; and Q; is |Qi N Qj| = |Qi| +|Qj| = |QiVQj| > (n—2t) +(n—t) —n =n—3t,s0 |Qi N Qj N Corrects| > n — 4t.

85

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.

Therefore, process p; receives at least ECHO messages with value w, which ensures that if
P j g

86

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that -if _

87

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that w’ = w if _

88

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that w’ = wif n — 4t > -

89

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/ X Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)

else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/X-resiliency.
PROOF.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Qj| = n — t processes. The overlap
between Q; and Q; is |Qi N Q| = |Qi| +|Qj| - |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that w’ = wifn—4t > (n-1)/2,

90

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/7: Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)

else:

1:

2

3

4

5: upon (ECHO, -) is received from n — f processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/7-resiliency.

Proor.

Consistency: Assume a correct process p; decides (w, 1) (otherwise, consistency is immediate). Process p; must have
received ECHO messages with value w from a set Q; of |Q;| = n — 2t distinct processes. Let another correct process, p;,
decide on some value (w’, -). We aim to show that w’ = w.

Process p;’s decision was based on receiving ECHO messages from a set Q; with |Q;| = n — ¢t processes. The overlap
between Q; and Q; is |Q; N Qj| = |Qi| +|Qj| = |QiVQj| > (n—2t) +(n—t) —n =n—-3t,s0 |Qi N Qj N Corrects| > n — 4t.
Therefore, process p; receives at least n — 4t ECHO messages with value w, which ensures that w’ = wifn—4t > (n—1)/2,

ie,ifn > 7t.

91

Algorithm 1 Asynchronous Binary Graded Consensus with refinement R = 2, and t < n/7: Pseudocode (for process p;)

upon propose(v; € Binary Value):
broadcast (PROPOSAL, v;)

: upon (PROPOSAL, -) is received from n — processes:
broadcast (EcHo, v"), where v” denotes the value with the highest frequency among the PrRoPOSAL messages. p#(0v') > (n-1)/2

if 3v” € Binary_Value, s.t. at least n — 2t ECHO messages contain value 0"’
trigger decide(v”,1)
else:

1:

2

3

4

5: upon (ECHO, -) is received from n — t processes:

6

7

8

9 trigger decide(v", 0), where v* denotes the value with the highest frequency among the EcHo messages. e #(0°) > (n—1t)/2

LEMMA 1.1. Algorithm 1 implements graded consensus with the refinement parameter R = 2 and n/7-resiliency.

92

One more refinement

93

Properties of Graded Consensus

Termination: All correct processes decide.

Integrity: No process decides more than once.
Consistency (Agreement): Assume two correct processes decide (v, g)
and (V', g'). We have (a) |g-g'|<1, and (b) if vV, then g=g’=0.

Unanimity: If only v is proposed, then only (v, g.,,4,) €an be decided.

94

g =2
= g =0
n ga,zz

0,
0 (0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
O——O0—0—0—0—0
1

g =2
g =0
g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1 27;%

0 O—O0—O0—g@—§
55 1

(1) If two corr
ect proce [
sses decide (v,g) and (V',g'), then either (i) 0
g=g'=0, or (ii) |g-g’
g’'|<1,and v=V’

(2) If two corr
ect proc [
esses decide (v,g) and (V,g’), then (a) |g-g’|<1, and
-g'l<1, and (b) (v#V = g=¢’
g=g'=0).
96

g =2 =
g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 o—Oo—Oo0—@g—@ —© 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g’=0, or (ii)[lg-g’lSl and v=v’]

(2) If two correct processes decide (v,g) and (V',g’), then (a) |[g-g’|<1, and (b) (v#V = g=g'=0)
: 97

g =2 =
g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 o—o—g—w——o——o 1

(1) If two correct processes decide (v,g) and (V',g'), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'

(2) If two correct processes decide (v,g) and (V',g’), then (a) |[g-g’|<1, and (b) (v#V = g=g'=0)
: 98

g =2 =
g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 o—o—g—w——o——o 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) or (ii) |g-g'|<1, and v=V’

(2) If two correct processes decide (v,g) and (V',g’), then (a) |[g-g’|<1, and (b) (v#V = g=g'=0)
: 99

g =2 g =0 g =2

max man max

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
0 T O —©°o—o—o 1

(1) If two correct processes decide (v,g) and (V',g'), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). 100

g =2 g =0 g =2

max man max

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
0 T O —©°o—o—o 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g’=0, or (ii)[lg-g’lSl, and v=v’.]

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). 101

g =2 g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 e—o—@ O —o0—o 1

(1) If two correct processes decide (v,g) and (V',g'), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a) |g-g'|<1, and (b) (v#V = g=g’=0). 102

g =2 g =0 g =2

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)

0 e—o—@ O —o0—o 1

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a)||g-g’|<1| and (b) (v#V = g=g’=0). 103

Inconsistent !

(1) If two correct processes decide (v,g) and (V',g’), then either (i) g=g'=0, or (ii) |g-g'|<1, and v=V'.

(2) If two correct processes decide (v,g) and (V',g’), then (a)||g-g’|<1| and (b) (v#V = g=g’=0). 104

g =2 g =0 g =2

max man max

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
0 o—Oo—o0—o0——0—o0]

All correct processes eventually decide the unanimous proposal with high confidence value. 105

g =2 g =0 g =2

max man max

(0,2) (0,1) (0,0) (1,0) (1,1) (1,2)
0 @ OO —o0—o—o 1

All correct processes eventually decide the unanimous proposal with high confidence value. 106

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke G C,.propose(v;)
upon GC,.decide(v}, g;):

invoke GC g.prnpose{.]
upon GC,.decide(v?, %)

trigger decide(-)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

107

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke G C,.propose(v;)
upon GC,.decide(v}, g;):

invoke GC,.propose(v;)
upon GC,.decide(v?, %)

trigger decide(n?,.)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

108

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke G C,.propose(v;)
upon GC,.decide(v}, g;):

invoke GC,.propose(v;)
upon GC,.decide(v?, %)

trigger decide(ﬂ'ﬁ, gi)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

109

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):
invoke G C,.propose(v;)
upon GC,.decide(v}, g;):
gi < gi +g;
invoke GC,.propose(v;)
upon QCg.decide(Uf,gf}:

gi — gi + 4
trigger decide(n?,gf)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

110

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value):
invoke GC,.propose(v;) > Propose input value to the 1st graded consensus instance
upon GC, .decide(n} : g%): > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
gi < gi + gf > Update the grade (confidence)
trigger decide (27, g;) > Decide the final value and grade

LEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = 3.

111

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

1: Uses:

2: Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

3: Local Variables:

4: Integer g; « 0 > Grade

5: upon propose(v; € Value):

6: invoke GC,.propose(v;) > Propose input value to the 1st graded consensus instance

7: upon GC, .decide(n} : g%): > Received decision from the 1st graded consensus instance

8: gi «— gi +9; > Update the grade (confidence)

9: invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
10: upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
11: gi < gi + gf > Update the grade (confidence)
12: trigger decide (27, g;) > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = A
PRrooOF.
e Termination follows directly from the termination of GC; and GC5.
112

_ -/

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

trigger decide(ﬂ'ﬁ, gi)

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value):
invoke GC,.propose(v;) > Propose input value to the 1st graded consensus instance
upon GC, .decide(n} : g%): > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
gi < gi + gf > Update the grade (confidence)

> Decide the final value and grade

PROOE.

e Termination follows directly from the termination of GC; and GC,.

_

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e Unanimity property follows directly from the unanimity property of GC; and GC,.

-/

113

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value):
invoke GC,.propose(v;) > Propose input value to the 1st graded consensus instance
upon GC, .decide(n} : g%): > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
gi < gi + gf > Update the grade (confidence)
trigger decide (27, g;) > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = A

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

\ / 114

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value):
invoke G C,.propose(v;) @ \§\ vl.l =w, 1)! > Propose input value to the 1st graded consensus instance
u : 114 _\ . - ,
pon|GC, [decide(v;,g; k = > Received decision from the 1st graded consensus instance
gi —gi+g; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC g.decide(nf, g?}: > Received decision from the 2nd graded consensus instance
gi < gi + gf > Update the grade (confidence)
trigger decide (27, g;) > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 1: j = 1.

\ j 115

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

Uses:

Binary Graded Consensus, instances GC,, GC,

Local Variables:
Integer g; < 0

upon propose(v; € Value):

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

invoke G C,.propose(v;) @ ‘U =w, 1)! \’\\ (vl =W *)! > Propose input value to the 1st graded consensus instance
N & O3\ "

upon GC,. demde(n ,g;):

9gi < gi "‘9;

invoke GC,.propose(v;)
upon QCg.decide(Uf,gf}:

gi — gi + 4
trigger decide(n?,gf)

Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

Case 1: j = 1. By consistency,

to GC,.

_

such j exists, the result is immediate.

each correct process outputs (w, -) from GC, for some value w

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

and thus proposes w

-/

116

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke GC,.propose(v;) @ \§\ (vll =w, 1)!

Binary Graded Consensus, instances GC,, GC,

upon GC,.decide(v;,9;): ==
gi < gi +9,

upon QCg.decide(Uf,gf}:

invoke GC,.propose(v;) @ \é w!

gi — gi + 4
trigger decide(n?,gf)

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

(v} = W,*)! > Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance

> Update the grade (confidence)

> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance

> Update the grade (confidence)
> Decide the final value and grade

Case 1: j = 1. By consistency,

to GC,.

_

such j exists, the result is immediate.

each correct process

outputs (w, -) from GC, for some value w, and thus

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

proposes w

-/

117

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

Uses:

Binary Graded Consensus, instances GC,, GC,

Local Variables:

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

Integer g; « 0 > Grade
upon propose(v; € Value): @ @

invoke G C,.propose(v;) @ \\ ‘U =w, 1)! (\ == \ \ (v]l — W,*)! > Propose input value to the 1st graded consensus instance

upon GC,. demde(n ,g;): @ > Received decision from the 1st graded consensus instance

gi & gi + 9; %@ | > Update the grade (confidence)
w.

invoke GC,.propose(v;)
upon QCg.decide(vf,gf}:

gi — gi + 4
trigger decide(n?,gf)

> Propose input value to the 2nd graded consensus instance
@ > Received decision from the 2nd graded consensus instance
‘s (‘U* =w, 1)! > Update the grade (confidence)

ﬁ% ! > Decide the final value and grade
S

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 1: j = 1. By consistency, each correct process outputs (w, -) from GC, for some value w, and thus proposes w

to GC,.

Therefore, due to the unanimity property of graded consensus GC,, every correct process returns (w, 1)

from GC>.

_

-/

118

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

Uses:

Binary Graded Consensus, instances GC,, GC,

Local Variables:

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

Integer g; « 0 > Grade
upon propose(v; € Value): @ @

invoke G C,.propose(v;) @ \\ ‘U =w, 1)! (\ == \ \ (v]l — W,*)! > Propose input value to the 1st graded consensus instance

upon GC,. demde(n ,g;): @ > Received decision from the 1st graded consensus instance

gi < gi "‘9;

invoke GC,.propose(v;) % é

upon QCg.decide(Uf,gf}:

gi < gi +9*

| % (vF=w.1)
trigger decide (27, g;) @’

> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

_

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 1: j = 1. By consistency, each correct process outputs (w, -) from GC, for some value w, and thus proposes w

to GC,. Therefore, due to the unanimity property of graded consensus GC, every correct process returns (w, 1)

from GC>.

Hence, consistency follows directly from the consistency of GC,

-/

119

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):
invoke G C,.propose(v;)
upon GC,.decide(v}, g;):
gi < gi +9,
invoke GC,.propose(v;)
upnleCg.decide(Uf,gf}:

gi — i + ¢
trigger decide(n?,gf)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

e To prove consistency, let j be th

Case 2: j = 2.

_

first instance

such j exists, the result is immediate.

f graded consensus where

some process outputs (-, 1) from GC;

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

If no

120

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):

gi = gi+9,

gi < gi +9*

Binary Graded Consensus, instances GC,, GC,

invoke GC,.propose(v;) (_\ \’\ (x,0)!
upnr{ GC,|decide(v;, g;): @v =\

invoke GC,.propose(v;)
upon GC,.decide(v?, %)

trigger decide(ﬂ'f, gi)

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2.

By construction, each correct process outputs (-, 0) from GC;.

_

/ 121

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

Uses:

Binary Graded Consensus, instances GC,, GC,

Local Variables:
Integer g; < 0

upon propose(v; € Value):

invoke G C,.propose(v;)

gi = gi+9,

invoke GC,.propose(v;)

CD (*,0)!
upnr@ decide(v;, g;): @\\

upon GC,.decide(v?, %) . @ N

gi < gi +9*

‘ & ’ (*,*)!
trigger decide(ﬂf,g;) @ ;\

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

_

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2.

By construction, each correct process outputs (-, 0) from GC;.

j/ 122

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @v — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(nf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi —gi+9; ‘ ﬁ% \“ (,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-, 0) from GC,.|Therefore, due to the consistency

property of graded consensus GC»,

\ / 123

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @V — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi —gi+9; ‘ ﬁ% \“ (,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-, 0) from GC,.|Therefore, due to the consistency

property of graded consensus GC,, if two correct processes p; and p; decide on (v;, gi) and (v}, gj), respectively, then

\ / 124

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @V — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi —gi+9; ‘ ﬁ% \“ (,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

property of graded consensus GC», if two correct processes p; and p; decide on (v;, gi) and (v}, g;), respectively, then
9i —gjl < 1.)

\ / 125

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @V — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi —gi+9; ‘ ﬁ% \“ (,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

[property of graded consensus GC», if two correct processes p; and p; decide on (v;, gi) and (v}, g;), respectively, then

lgi — gj| < 1. Moreover,
J

\ / 126

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @v — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi — gi+g° ﬁ% \‘s (*,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

property of graded consensus GC», if two correct processes p; and p; decide on (v, gi) and (v}, g;), respectively, then
lgi — gj| < 1. Moreover, if gi # 0,

J

\ / 127

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @v — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi — gi+g° ﬁ% \‘s (*,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

[property of graded consensus GC», if two correct processes p; and p; decide on (v, gi) and (v}, g;), respectively, then

|9’:' —gjl < 1. Moreover, ifg,- # 0, vj = vj.
J

\ / 128

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:
Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
: Local Variables:
Integer g; « 0 > Grade
upon propose(v; € Value): — N
invoke G C,.propose(v;) % . \’\ (*, O)! > Propose input value to the 1st graded consensus instance
upon GC,.decide(v}, g;): @v — > Received decision from the 1st graded consensus instance
gi «— gi +9; > Update the grade (confidence)
invoke GC,.propose(v;) > Propose input value to the 2nd graded consensus instance
upon GC z.decide(vf, g?}: _ @ > Received decision from the 2nd graded consensus instance
gi — gi+g° ﬁ% \‘s (*,%)! > Update the grade (confidence)
trigger decide (27, g;) g _\ > Decide the final value and grade

ﬂEMMA 1.2. Algorithm 2 implements graded consensus with the refinement parameter R = ﬁ

e To prove consistency, let j be the first instance of graded consensus where some process outputs (-, 1) from GC;. If no

such j exists, the result is immediate.

Case 2: j = 2. By construction, each correct process outputs (-,0) from GC,.|Therefore, due to the consistency

[property of graded consensus GC», if two correct processes p; and p; decide on (v, gi) and (v}, g;), respectively, then

|9i — gj| < 1. Moreover, if gi # 0, v; = v;. This implies consistency.
J

\ / 129

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):
invoke G C,.propose(v;)
upon GC,.decide(v}, g;):
gi < gi+9;
invoke GC,.propose(v;)
upon QCg.decide(Uf,gf}:

gi < gi +5’f
trigger decide(n?,gf)

Binary Graded Consensus, instances GC,, GC) > 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2

> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance

> Decide the final value and grade

> Update the grade (confidence)

130

- Algorithm 2 Binary Graded Consensus (BGC) with refinement R = 3 on top of BGC with refinement R = 2

e
L el =

- A A

: Uses:

: Local Variables:
Integer g; < 0

upon propose(v; € Value):
invoke G C,.propose(v;)
upon GC,.decide(v}, g;):
gi < gi+9;
invoke GC,.propose(v;)
upon QCg.decide(Uf,gf}:

gi < gi +5’f
trigger decide(n?,gf)

Binary Graded Consensus, instances GC,, GC,

> 2 instances of the Binary Graded Consensus protocol with Refinement R’ = 2
> Grade

> Propose input value to the 1st graded consensus instance

> Received decision from the 1st graded consensus instance
> Update the grade (confidence)
> Propose input value to the 2nd graded consensus instance

> Received decision from the 2nd graded consensus instance
> Update the grade (confidence)
> Decide the final value and grade

Algz

GCR=2

Alg,

> | GCR7?| E | GCR=3

E GCR:3
131

Common Coin

132

Interface of the common coin

Q))

(3

<>
s

133

Interface of the common coin

Flip Yield

Interface of the common coin

Flip Yield

Properties of the Common Coin

Termination: All correct processes eventually yield a binary value.

Agreement: All correct processes agree on O (or 1) with probability >O0.
Unpredictability: As soon no correct process has triggered ‘flip’, the

adversary cannot predict the output with probability greater than 1/2.

136

A naive implementation of the Common Coin

Algorithm 3 Common Coin

1: upon flip():

2: b 15— {0,1} > Choose either 0 or 1 with probability 1/2
3: trigger yield(b)

137

A naive implementation of the Common Coin

Algorithm 3 Common Coin

1: upon flip():

2: b ts— {0,1} > Choose either 0 or 1 with probability 1/2
3: trigger yield(b)

E

138

Consensus = Stay safe + Try
(and try again)

()
ﬁ é ﬁ _) ﬁ -
. J

140

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

1: Uses:
2 Binary "Extended" Graded Consensus, instances EGC,, EGC,, ... > oo instances of the Binary Graded Consensus with Refinement R = 3
3: Constants:
4 Integer gpmin < 0
5: Integer gmax < 2
6: Local Variables:
7 Binary_Value est; « 0 > Estimate Value
8 Integer g; < Gmin > Grade (Confidence) in {0, 1,2}
9: Integer attempt < 0

10: Integer halt « oo

11: Boolean decided « false

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (e > Execute instance of extended graded consensus

sti,gi) «— EGC gpempr-propose(est;)
17: if
18: trigger decide(est; > Decide

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCastempt-flip() > Execute instance of common coin
23, if#

24: est; «— b;

25: attempt «— attempt + 1

141

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

9:
10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

1
2
3
4
5:
6
7
8

: Uses:
Binary "Extended" Graded Consensus, instances EGC,, EGC», ...

: Constants:

Integer gpmin < 0
Integer gmax < 2

: Local Variables:

Binary_Value est; « 0
Integer gi < Gimin
Integer attempt « 0
Integer halt « oo
Boolean decided « false

upon propose(v; € Value):
est; «— v;:
while halt > attempt:

//safety guard
(EStf’ gl) - Sgcﬂﬂempt'Propose(BSfI-)
if §; == gmax N decided = false:
trigger decide(est;)
decided « true
halt « attempt + 1
//try to converge

bi — CC astempt-flip()
i [
est; «— bj

attempt «— attempt + 1

» oo instances of the Binary Graded Consensus with Refinement R = 3

> Estimate Value
> Grade (Confidence) in {0, 1,2}

> Execute instance of extended graded consensus

= Decide

> Halt after the next attempt after having helped the remaining processes to decide

» Execute instance of common coin

142

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

1: Uses:
2 Binary "Extended" Graded Consensus, instances EGC,, EGC,, ... > oo instances of the Binary Graded Consensus with Refinement R = 3
3: Constants:
4 Integer gpmin < 0
5: Integer gmax < 2
6: Local Variables:
7 Binary_Value est; « 0 > Estimate Value
8 Integer g; < Gmin > Grade (Confidence) in {0, 1,2}
9: Integer attempt < 0
10: Integer halt « oo
11: Boolean decided « false
12: upon propose(v; € Value):
13: est; «— v;:
14: while halt > attempt:
15: //safety guard
16: (est;, 9i) < EGC spemp;-propose (est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:
18: trigger decide(est;) > Decide
19: decided « true
20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge
22: bi « CCattemp:-flip() > Execute instance of common coin
23: if 9; == gmin:
24: est; « b;
25: attempt «— attempt + 1

143

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCattempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt «— attempt + 1

LEMMA 1.3. If all correct processes begin attempt k with the same estimate value v, they will all decide on v by attempt k and halt

by attempt k + 1.

Proor.

144

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

est; « v;:
while halt > attempt:
//safety guard
(est;, gi) < EGC arrempr-Propose(est;)
if i == gmax A decided = false:
trigger decide(est;)
decided « true
halt « attempt + 1
//try to converge
bf — CCaﬂngr.flip()
if 9i == gmin:
est; «— b;
attempt «— attempt + 1

> Execute instance of extended graded consensus

> Decide

> Halt after the next attempt after having helped the remaining processes to decide

» Execute instance of common coin

LEMMA 1.3. If all correct processes begin attempt k with the same estimate value v, they will all decide on v by attempt k and halt

by attempt k + 1.

Proor. By the unanimity property of EGCy,

145

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: EGC attemp:-propose(est;) > Execute instance of extended graded consensus
17: if @V\ decided = false:

18: rigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCattempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.3. If all correct processes begin attempt k with the same estimate value v, they will all decide on v by attempt k and halt
by attempt k + 1.

Proor. By the unanimity property of EGC}, all correct processes return (v, gmax) from EGCy.

146

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if|g; == Gmax A decided = false:

18: (trigger decide(est;)] > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.3. If all correct processes begin attempt k with the same estimate value v, they will all decide on v by attempt k and halt
by attempt k + 1.

Proor. By the unanimity property of EGCy, all correct processes return (v, gmax) from EGCy. The rest follows directly from
the protocol. O

147

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if gi == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided < true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProOF. Let p; be the first correct process to decide, and assume it decides on v at attempt k.

148

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: ard

16: (esti, gi) < EGC gppemp:-propose(est;) > Execute instance of extended graded consensus
17: if| gi == gmax|A decided = false:

18: Tipper decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

Proor. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned

(ﬂ, gmax) from EQCk

149

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15:

16: > Execute instance of extended graded consensus
17:

18: > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

Proor. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned

(0, gmax) from EGCy. By the consistency property of EGCy., every correct process pj returns (v, g; € {1,2}) from EGCy

150

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15:

16: > Execute instance of extended graded consensus
17:

18: > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProOF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, 9max) from EGCy. By the consistency property of EGCy, every correct process pj returns (v, g; € {1,2}) from EGCy, updating

its estimate est j tow.

151

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15:

16: > Execute instance of extended graded consensus
17:

18: > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProOF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, 9max) from EGCy. By the consistency property of EGCy, every correct process pj returns (v, g; € {1,2}) from EGCy, updating

its estimate est; to v. Thus, g; > gmin,

152

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() > Execute instance of common coin
23: [if gi == gmini

24: est; «— b;

25: attempt < attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProOF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, 9max) from EGCy. By the consistency property of EGCy, every correct process pj returns (v, g; € {1,2}) from EGCy, updating

its estimate est; to v. Thus, g; > gmin, so all correct processes ignore the output of CCy and retain est; = v.

153

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
23:

upon propose(v; € Value):
est; «— v;:
while halt > attempt:
//safety guard
(esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
if g; == gmax A decided = false:
trigger decide(est;) > Decide
decided « true
halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

//try to converge
bi — CCartempt-flip() > Execute instance of common coin

if i == gmin:
est; «— b;
attempt «— attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProoF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, gmax) from EGC. By the consistency property of EGCy, every correct process p; returns (v, g; € {1, 2}) from EGCy, updating
its estimate est; to v. Thus, g; > gmin, so all correct processes ignore the output of CCy and retain est; = v. Consequently, all

correct processes begin attempt k + 1 with estimate value v. O

154

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
23:

upon propose(v; € Value):
est; «— v;:
while halt > attempt:
//safety guard
(esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
if g; == gmax A decided = false:
trigger decide(est;) > Decide
decided « true
halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

//try to converge
bi — CCartempt-flip() > Execute instance of common coin

if i == gmin:
est; «— b;
attempt «— attempt + 1

LEMMA 1.4. If a correct process decides on v in attempt k, then all correct processes will decide on v by attempt k + 1.

ProoF. Let p; be the first correct process to decide, and assume it decides on v at attempt k. This implies that p; returned
(v, gmax) from EGC. By the consistency property of EGCy, every correct process p; returns (v, g; € {1, 2}) from EGCy, updating
its estimate est; to v. Thus, g; > gmin, so all correct processes ignore the output of CCy and retain est; = v. Consequently, all

correct processes begin attempt k + 1 with estimate value v. Lemma 1.3 then completes the proof. O

155

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCattempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt «— attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

ProOF.

156

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — Ccammpr-ﬂip()

23: if 9i == gmin:

24: estj « b;

25: attempt «— attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from

157

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — Ccammpr-ﬂip()

23: if 9i == gmin:

24: estj « b;

25: attempt «— attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3,

158

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — Ccammpr-ﬂip()

23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from

159

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — Ccammpr-ﬂip()

23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4.

160

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi « CCattempt-flip() > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination.

161

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;)
17: if g; == gmax A decided = false:

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge —

22: bi — CCattempr-flip() €

23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination. Let p; be

the first correct process calling CC for some attempt k.

162

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:)1

15: //safety guard = \\ (b’ gl)

16: (esti, gi) < EGC sptempr-propose(est;) @ _\ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false: -

18: trigger decide(est;)

19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge —

22: bi — CCartempt-flip() @ > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination. Let p; be

the first correct process calling CCj for some attempt k. Let (b, g;) the pair returned by p; from EGCy.

163

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt:)1

15: //safety guard = \’\ (b’ gl)

16: (esti, gi) < EGC sptempr-propose(est;) @ _\ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false: -

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: Hixy to converge —

22: bi + CCastempt-flip() @ > Execute instance of common coin
23: 117 == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination. Let p; be

the first correct process calling CC}. for some attempt k. Let (b, g;) the pair returned by p; from EGCj.. With non-zero probability

p, all correct processes return b from CCy.

164

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: ’\ (b’ gl] I

15: J'r.l'fSBfEt)" guard —

16: (est;,g;) «— EGC ﬂmr,.,,}M.|:1r«t:\~|:u:)s¢.=:1est,- @ l\ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: Hixy to converge —

22: bi + CCastempt-flip() @ > Execute instance of common coin
23: 179 == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

Proor. Validity follows from Lemma 1.3, and Agreement follows from Lemma 1.4. We now prove Termination. Let p; be

the first correct process calling CC}. for some attempt k. Let (b, g;) the pair returned by p; from EGCj.. With non-zero probability

p, all correct processes return b from CCj. We consider two cases depending on the grades obtained by correct processes from

EGC. In both cases, all correct processes start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

165

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
23:

est; «— v;:
while halt > attempt: bla:)
//safety guard ’\ (A

(est, gi) < SQCauemp;-Pr0P0561fos @ l\

Hixy to converge

bi § CCattempr-flip() €&
ity == 9min:
est; «— b;

attempt «— attempt + 1

> Execute instance of extended graded consensus

if g; == gmax A decided = false:
trigger decide(est;) > Decide
decided « true
halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes

start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

166

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: N (b, g;)!

15: J'r.l'fSﬂfE:t)" guard — \’ .

16: (esti, gi) < EGC sptempr-propose(est;) @ _\ \ (b 9i > Gmin)! > Execute instance of extended graded consensus
17: if g; == gmax A decided = false: . \‘\ = minj-

18: trigger decide(est;) @ — > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge —

22: bi — CCartempt-flip() @ > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes
start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case

dp; € Correct,gj > gminf

167

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ (b, gi)!

15: Hsafetyguaﬁ — \’ .

16: (est;,g;) « SQCﬂmmpt]pmpose(est,-) @ _\ \ (b 9i > Gmin)! > Execute instance of extended graded consensus
17: if g; == gmax A decided = false: . \‘\ = minj-

18: trigger decide(est;) @ — > Decide
19: decided « true

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge —

22: bi — CCartempt-flip() @ > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes

start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case|dp; € Correct,gj > gmin]: By EGCL’s consistency,

168

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ (b, g;)!

15: guard

16: (est,,;,) — EGC strempe-propose (est;) @ \\ (b S _)'
17: if g; == gmax A decided = false: @ \\) g] Imin):
18: trigger decide(est;) — \ (b *)

19: decided « true ’

20: halt « attempt + 1 % \ > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempr-flip() @)

23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

> Execute instance of extended graded consensus

» Execute instance of common coin

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes

start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case(dp; € Correct,g; > gm,-n]: By EGC}’s consistency, (a) all processes return (b, -) from EGCy.,

169

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ ! i)!

15: guard

16: (est;, §i) < EGC sptempr-propose(est;) @ \ b, > Execute instance of extended graded consensus
- - N (D, gj > Gmin)!

17: if g; == gmax A decided = false: \‘ J

18: trigger decide(est;) — \ (b *)| @ _\ > Decide

19: decided « true \‘

20: halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

21: to converge

22: CC‘am,ﬂpf flip() @ > Execute instance of common coin

23: If gi =

24: est, «— b;

25: attempt « attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying
graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes
start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case|dp; € Correct,g; > gmin]: By EGC}’s consistency, (a) all processes return (b, -) from EGCy, so they will all have the

same estimate value at attempt k + 1, either by adopting CCy’s output or by retaining the value from EGCy.

170

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; « v;:
14: while halt > attempt: ’\ l)

15: guard

16: (est;, ;:) — SQCﬂﬂmﬂ.proposellesth @ s (b gi>g) > Execute instance of extended graded consensus
17: if i == Gmax A decided = false: \0 J min

18: trigger decide(est;) ’\ (b *)| @ _\ > Decide
19: decided « true &)

20: halt « attempt + 1 % \ > Halt after the next attempt after having helped the remaining processes to decide
21: to converge

22: ﬁ CC‘am,ﬂpf flip() @ > Execute instance of common coin
23: if g; =

24: est, «— b;

25: attempt « attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes

start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case|dp; € Correct,g; > gmin]: By EGC}’s consistency, (a) all processes return (b, -) from EGCy, so they will all have the

same estimate value at attempt k + 1, either by adopting CCy’s output or by retaining the value from EGCy.

171

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ (b, g;)!

15: //safety guard

16: (esti, gi) < EGC sptempr-propose(est;) @ \\ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) \(* O) > Decide
19: decided « true &) ’

20: halt « attempt + 1 % > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi — CCartempt-flip() @ > Execute instance of common coin
23: if 9i == gmin:

24: estj « b;

25: attempt < attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes
start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case Jp; € Correct,g; > gmin: By EGCy’s consistency, (a) all processes return (b, -) from EGCy, so they will all have the

same estimate value at attempt k + 1, either by adopting CC}’s output or by retaining the value from EGCy.

- Case

Vp;j € Correct,gj = gmin:

172

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):

13: est; «— v;:

14: while halt > attempt: \ (b,g;)!

15: //safety guard

16: (esti, gi) < EGC sptemps-propose [l est; | @ \ > Execute instance of extended graded consensus
17: if g; == gmax A decided = false:

18: trigger decide(est;) \ (*)| > Decide
19: decided « true &) ’ » Gmin

20: halt « attempt + 1 % > Halt after the next attempt after having helped the remaining processes to decide
21: //try to converge

22: bi + CCastempt-flip() @ > Execute instance of common coin
23: it gi == gmin:

24: est;j « b;

25: attempt « attempt + 1

THEOREM 1.5. Algorithm 4 implements binary Byzantine consensus with probability 1 and has the same resiliency as the underlying

graded consensus object.

-We consider two cases depending on the grades obtained by correct processes from EGCp. In both cases, all correct processes
start the next attempt with the same estimate value, allowing us to apply Lemma 1.3.

- Case Jp; € Correct,g; > gmin: By EGCy’s consistency, (a) all processes return (b, -) from EGCy, so they will all have the

same estimate value at attempt k + 1, either by adopting CC}’s output or by retaining the value from EGCy.

- Case

processes.

Vp;j € Correct,gj = gmin!

All processes adopt the value provided by the common coin, which is identical across

o 173

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):
est; «— v;:
while halt > attempt:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

//safety guard
(e‘“i’ 91) — Sgcﬂﬂempt'prﬂpnse(e-ﬂi)
if i == gmax A decided = false:
trigger decide(est;)
decided « true

> Execute instance of extended graded consensus

> Decide

halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

//try to converge
bi « CCattempt-flip()
if gi == gmin:

est; « b;

attempt «— attempt + 1

> Execute instance of common coin

r
N ﬁﬁ ...ﬁﬁﬁ
\

~\

J

I

BA

174

Algorithm 4 Byzantine Agreement Protocol with Extended Graded Consensus

12: upon propose(v; € Value):
est; «— v;:
while halt > attempt:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:

//safety guard
('E-Hi: 9;) — Sgcaﬂempt'prﬂpnse(esn)
if g; == gmax A decided = false:

> Execute instance of extended graded consensus

trigger decide(est;) > Decide
decided « true
halt « attempt + 1 > Halt after the next attempt after having helped the remaining processes to decide

//try to converge
bi — CCartempt-flip()
if gi == gmin:

est; «— b;
attempt « attempt + 1

&> Execute instance of common coin

r
N ﬁﬂ ...ﬁﬁﬁ
\

~\

J

D;

I

BA

175

Positive Result 1: There exists a
randomized asynchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures

A general perspective

:

(-)
. J

I

178

Alg'

(-)
. J

I

179

Alg'

Safety Guards

!

r

.

~
— |63 — —>
y,

I

180

Alg'

Safety Guards

!

()
IGCR=3| — — — | GCR=3l — I Try I — ... C
. J

v

Convergence under good circumstances

181

Alg'

Safety Guards

!

r

\

N
GCR=3] — —> ... — |GCR=3 —>| Try I—) C

J

v

Convergence under good circumstances

Luckyness via a common coin

182

Alg'

Safety Guards

!

r

\

N
GCR=3] — —> ... — |GCR=3 —)I Try |—> =

J

v

Convergence under good circumstances

Luckyness via a common coin
Eventual Synchrony + Synchronization

183

Alg'

Safety Guards

!

r

\

N
GCR=3] — —> ... — |GCR=3 —)I Try |—> =

J

v

Convergence under good circumstances

Luckyness via a common coin
Eventual Synchrony + Synchronization

Unreliable Failure Detectors

184

Alg'

Safety Guards

!

r

\

N
GCR=3] — —> ... — |GCR=3 —)I Try |—> =

J

v

Convergence under good circumstances

Luckyness via a common coin
Eventual Synchrony + Synchronization

Unreliable Failure Detectors

Fair scheduling / Noisy Environement

185

Alg'

Safety Guards

!

r

\

N
GCR=3] — —> ... — |GCR=3 —)I Try |—> =

J

v

Convergence under good circumstances

Luckyness via a common coin
Eventual Synchrony + Synchronization

Unreliable Failure Detectors
Fair scheduling / Noisy Environement

Synchrony + round-robin rotating leader

186

Alg'

Synchrony

r
ﬁﬁ
.

~\
e[] - -

J

v

Correct Leader

I

187

Positive Result 2: There exists a
deterministic synchronous protocol
that solves consensus, while
tolerating arbitrary (Byzantine) failures

189

	Slide 1: Consensus with Byzantine failures and asynchrony: the Ben-Or’s algorithm, revisited
	Slide 2: Recap
	Slide 3: Positive Result: There exists a deterministic synchronous protocol that solves consensus, while tolerating crash failures
	Slide 4: FLP Theorem: No deterministic protocol can solve consensus, while tolerating 1 crash and asynchrony
	Slide 5: Today
	Slide 6: Positive Result 1: There exists a randomized asynchronous protocol that solves consensus, while tolerating arbitrary (Byzantine) failures
	Slide 7: Positive Result 2: There exists a deterministic synchronous protocol that solves consensus, while tolerating arbitrary (Byzantine) failures
	Slide 8: Consensus
	Slide 9: System
	Slide 10: System
	Slide 11: Interface of Consensus
	Slide 12: Interface of Consensus
	Slide 13: Interface of Consensus
	Slide 14: Properties of Consensus
	Slide 15: Asynchronous Model
	Slide 16: Asynchronous Model (Informal)
	Slide 17: Synchronous Model
	Slide 18: Graded Consensus
	Slide 19: Graded Consensus
	Slide 20: Interface of graded consensus
	Slide 21: Interface of graded consensus
	Slide 22: Interface of graded consensus
	Slide 23: Interface of graded consensus
	Slide 24: Properties of Graded Consensus
	Slide 25: Properties of Graded Consensus
	Slide 26: Properties of Graded Consensus
	Slide 27: Properties of Graded Consensus
	Slide 28: Properties of Graded Consensus
	Slide 29: Properties of Graded Consensus
	Slide 30: Properties of Graded Consensus
	Slide 31: Properties of Graded Consensus
	Slide 32: Properties of Graded Consensus
	Slide 33: Properties of Graded Consensus
	Slide 34: Properties of Graded Consensus
	Slide 35: Properties of Graded Consensus
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Graded Consensus
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93: One more refinement
	Slide 94: Properties of Graded Consensus
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132: Common Coin
	Slide 133: Interface of the common coin
	Slide 134: Interface of the common coin
	Slide 135: Interface of the common coin
	Slide 136: Properties of the Common Coin
	Slide 137: A naive implementation of the Common Coin
	Slide 138: A naive implementation of the Common Coin
	Slide 139: Consensus = Stay safe + Try (and try again)
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176: Positive Result 1: There exists a randomized asynchronous protocol that solves consensus, while tolerating arbitrary (Byzantine) failures
	Slide 177: A general perspective
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188: Positive Result 2: There exists a deterministic synchronous protocol that solves consensus, while tolerating arbitrary (Byzantine) failures
	Slide 189

