
RDMA & Concurrent Algorithms
4 Nov 2024

Igor Zablotchi

Based on joint work with, and slides from:
Marcos Aguilera, Naama Ben-David, Clément Burgelin, Rachid Guerraoui,

Virendra Marathe, Antoine Murat, Dalia Papuc, Athanasios Xygkis

A Tale of Two Models
• processes
• collaborate on some common task
• improve performance or robustness

computer processor thread

message-passing

memory

shared-memory

Equal But Not Quite

! = num processes
" = num failures

Crash

Fault Tolerance Common-case
Complexity

Message
Passing ! < #/2 2

[Lamport’98]
Shared

Memory & < ' 4
[GL’02]

The two models are equivalent [Attiya, Bar-Noy, Dolev 1995]
=

One can simulate the other

but, e.g., for solving consensus:

Models Reflect Technology

The two standard models reflect existing technology

BUT

Technology evolves, new technologies emerge

SO

We need new models

RDMA: Overview

• Networking hardware feature
• Direct access to remote memory

• No CPU at remote side
• No OS at either side

• Good performance
• ~1 us latency
• ~100-800 Gbps bandwidth

• Configurable access permissions

CPU CPU

RAM RAM

Server 1 Server 2

Direct
Access

RDMA

Memory Memory

NIC NICCPU CPU

Remote Direct Memory Access (RDMA)

Remote DMA

RDMA: Permissions and Failures

R1 R2 R3

NICCPU

p1

p2

p3p4

p5

p1: read R1&R2
p4: write R1
p5: RW R3
p3: none —

✘✘
Memory failure

Process failure

dynamic permissions: can be changed during execution

crash

Byzantine

Modelling RDMA

p1

p2

p3p4

p5

p1

p2

p3p4

p5

p1 p2 p3 p4 p5

minority of memories
can fail

memories

processes

Also called
“disaggregated memory”

Outline
• Introduction
• 3 remarkable results with RDMA:

• Consensus with crash faults
• Broadcast with Byzantine faults
• Fast memory replication

Best of Both Worlds

! = num processes
" = num failures

Crash
Fault

Tolerance
Common-case

Performance
Message
Passing ! > 2$ 2

[Lamport’98]
Shared

Memory % > & 4
[GL’02]

RDMA % > & 2

Refresher: O-Consensus
propose(v):
while(true)
Reg[i].T.write(ts);
val := Reg[1,..,n].highestTspValue();
if val = ⊥ then val := v;
Reg[i].V.write(val,ts);
if ts = Reg[1,..,n].highestTsp() then

return(val)
ts := ts + n

Paxos in Shared Memory

!What if memory can fail? !

This assumes that shared memory never fails.

announce my timestamp adopt
value with
highest ts
(or mine if

none)announce my value, ts

if my
timestamp

is the
highest,
decide

All-to-all
Connections

Replication: Treat all memories the same
Send all write/read requests to all memories, wait to hear
acknowledgement from majority

p1 p2 p3 p4 p5 p6

Instead of many faulty
memories, we can now think
of one non-faulty memory!

Handling Memory Failures

O-Consensus w Memory Failures
Disk Paxos [GafniLamport2002]

propose(v):

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then

return(val)
ts := ts + n

announce my
timestamp
adopt value
with highest
ts (or mine if

none)

announce
my value, ts

if my
timestamp

is the
highest,
decide

propose(v):

while(true)

for every memory m in parallel:
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts = temp[1..m][1..n].highestTsp() then

return(val)
ts := ts + n

O-Consensus w Memory Failures

Why read
again here?

☝ Need to
check if I

ran alone!

What If We Didn’t Read?

ts = 1

write ts read ts -> ok write val, ts

A, 1

ts = 2

write ts read ts -> ok write val, ts

B,2

DECIDE A

DECIDE B

P1

P2

Reg

• If we don’t read again, we might miss a concurrent
process’s timestamp
• This could lead to violation of agreement

• What if there was another way to determine if there
was a concurrent process?
• We wouldn’t need the last read!
→ better complexity

O-Consensus w Memory Failures

Solo Detection w/ Permissions

memory

p1
get

permission
ok

write
ok ok

write

Idea: Memory gives write permission to the last process that requested it.
→ Only one process has write permission on a memory at any time.

Solo Detection w/ Permissions

memory

p1
get

permission
ok

write
ok NOT OK

write

p2

get
permission

ok
write ok

Solo Detection w/ Permissions

memory

p1
get

permission
ok

write
ok

write

p2

get
permission

ok
write ok

ok

I was running solo (no
one else wrote)

propose(v):

while(true)

ts := ts + n

for every memory m in parallel:
m.getPermission();
Reg[m][i].T.write(ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if ts < temp[1..m][1..n].highestTsp() then continue;
val := temp[1..m][1..n].highestTspValue();
if val = ⊥ then val := v;
for every memory m in parallel:

Reg[m][i].V.write(val,ts);
temp[m][1..n] = Reg[m][1..n].read();

until completed for majority of memories
if writes succeeded at majority of memories then

return(val)

O-Consensus with
Memory Failures and Permissions

No need to
read again!

Quick Look: Replication Latency

3-4x faster than state-of the art

[3x replication, 100Gbps Infiniband]

3.06x

50 32 64 64 64 40 64 64
Payload [B]

4.08x

Outline
• Introduction
• 3 remarkable results with RDMA:

• Consensus with crash faults
• Broadcast with Byzantine faults
• Fast memory replication

On Frugality

Number of replicas in the system

A system with n = 3f + 1 replicas has 33–50% more hardware than a

system with n = 2f + 1, where f is the number of Byzantine replicas

1 / 33

On Frugality

Number of replicas in the system

A system with n = 3f + 1 replicas has 33–50% more hardware than a

system with n = 2f + 1, where f is the number of Byzantine replicas

1 / 33

On Frugality

Number of digital signatures

0 50 100 150 200

Send a message using RDMA o/IB

Send a message using TCP o/IB

Sign a message using CPU

Send a message using TCP o/Ethernet

Sign a message using FPGA

1.3

14.12

53.44

36.1

176.8

Latency [µs]

2 / 33

Goal

Address traditional distributed computing problems

subject to Byzantine failures with few processes,

n = 2f + 1, and few signatures

3 / 33

Equivocation

!

p2

p3

m

m

p2

p3

m

m’

Preventing Equivocations in
Message Passing
• Requires n=3f+1, where n is the total number of

processes and up to f processes can be Byzantine
• Intuition:

A C

B

m m’

✘
! !f

f

f

Adversary can
prevent correct
processes from
communicating

☹

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0 Process p2

write(m)

mShared memory M :

read()
write(m)write(m

0
)

mm
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0 Process p2

write(m)

mShared memory M :

read()
write(m)write(m

0
)

mm
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0 Process p2

write(m)

mShared memory M :

read()
write(m)write(m

0
)

mm
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0 Process p2

write(m)

mShared memory M :

read()
write(m)write(m

0
)

mm
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0 Process p2

write(m)

mShared memory M :

read()

write(m)write(m
0
)

mm
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0 Process p2

write(m)

mShared memory M :

read()

write(m)

write(m
0
)

mm
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0 Process p2

write(m)

mShared memory M :

read()
write(m)

write(m
0
)

m

m
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0 Process p2

write(m)

mShared memory M :

read()
write(m)write(m

0
)

mm
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Byzantine fault-tolerance

Non-equivocation and digital signatures improve the fault-tolerance from

3f + 1 to 2f + 1 for reaching agreement

Shared memory provides non-equivocation capabilities:

Shared memory M :

Process p1Process p0

Process p2

write(m)

mShared memory M :

read()
write(m)write(m

0
)

mm
0Shared memory M :

read()read()

Process p2

?!

4 / 33

Model

Message-and-memory (M&M) [ABCGPT18] - allows processes to both

pass messages and share memory M:

Single-Writer Multi-Reader (SWMR) atomic registers

individual memory may only fail by crashing

Signatures - each process has access to the primitives sign and verify

Up to f Byzantine processes, where n = 2f + 1

cannot write on a register that is not its own

cannot forge the signature of a correct process

5 / 33

Model

Message-and-memory (M&M) [ABCGPT18] - allows processes to both

pass messages and share memory M:

Single-Writer Multi-Reader (SWMR) atomic registers

individual memory may only fail by crashing

Signatures - each process has access to the primitives sign and verify

Up to f Byzantine processes, where n = 2f + 1

cannot write on a register that is not its own

cannot forge the signature of a correct process

5 / 33

Model

Message-and-memory (M&M) [ABCGPT18] - allows processes to both

pass messages and share memory M:

Single-Writer Multi-Reader (SWMR) atomic registers

individual memory may only fail by crashing

Signatures - each process has access to the primitives sign and verify

Up to f Byzantine processes, where n = 2f + 1

cannot write on a register that is not its own

cannot forge the signature of a correct process

5 / 33

Outline

1 Algorithms for Consistent and Reliable Broadcast

I Signature-free in well-behaved executions

2 Lower bounds for Consistent and Reliable Broadcast

Consistent Broadcast Reliable Broadcast

1 O(n)

Table: Total number of signatures created by correct processes

3 Consensus protocol using Consistent Broadcast

Consistent Broadcast–rather than Reliable Broadcast–is a better choice for

frugality

6 / 33

Outline

1 Algorithms for Consistent and Reliable Broadcast

I Signature-free in well-behaved executions

2 Lower bounds for Consistent and Reliable Broadcast

Consistent Broadcast Reliable Broadcast

1 O(n)

Table: Total number of signatures created by correct processes

3 Consensus protocol using Consistent Broadcast

Consistent Broadcast–rather than Reliable Broadcast–is a better choice for

frugality

6 / 33

Outline

1 Algorithms for Consistent and Reliable Broadcast

I Signature-free in well-behaved executions

2 Lower bounds for Consistent and Reliable Broadcast

Consistent Broadcast Reliable Broadcast

1 O(n)

Table: Total number of signatures created by correct processes

3 Consensus protocol using Consistent Broadcast

Consistent Broadcast–rather than Reliable Broadcast–is a better choice for

frugality

6 / 33

Process roles

Primitives: broadcast(m) and deliver(m)

Sender s - the process that invokes broadcast(m)

Replicator r - the process that ensures broadcast properties are satisfied

(e.g., replicates messages)

Receiver p - the process that invokes deliver(m)

n and f refer to the replicators

7 / 33

Process roles

Primitives: broadcast(m) and deliver(m)

Sender s - the process that invokes broadcast(m)

Replicator r - the process that ensures broadcast properties are satisfied

(e.g., replicates messages)

Receiver p - the process that invokes deliver(m)

n and f refer to the replicators

7 / 33

Process roles

Primitives: broadcast(m) and deliver(m)

Sender s - the process that invokes broadcast(m)

Replicator r - the process that ensures broadcast properties are satisfied

(e.g., replicates messages)

Receiver p - the process that invokes deliver(m)

n and f refer to the replicators

7 / 33

Process roles

Primitives: broadcast(m) and deliver(m)

Sender s - the process that invokes broadcast(m)

Replicator r - the process that ensures broadcast properties are satisfied

(e.g., replicates messages)

Receiver p - the process that invokes deliver(m)

n and f refer to the replicators

7 / 33

Process roles

Primitives: broadcast(m) and deliver(m)

Sender s - the process that invokes broadcast(m)

Replicator r - the process that ensures broadcast properties are satisfied

(e.g., replicates messages)

Receiver p - the process that invokes deliver(m)

n and f refer to the replicators

7 / 33

Consistent Broadcast

Validity

If a correct process s broadcasts m, then every correct process eventually

delivers m

Sender s

Receiver p0 Receiver p1

Receiver p2 Receiver p3

broadcast(m)

Sender s

Receiver p0 Receiver p1

Receiver p2 Receiver p3

broadcast(m)

Sender s

deliver(m)

Receiver p0

deliver(m)

Receiver p1

deliver(m)

Receiver p2

?

Receiver p3

8 / 33

Consistent Broadcast

Validity

If a correct process s broadcasts m, then every correct process eventually

delivers m

Sender s

Receiver p0 Receiver p1

Receiver p2 Receiver p3

broadcast(m)

Sender s

Receiver p0 Receiver p1

Receiver p2 Receiver p3

broadcast(m)

Sender s

deliver(m)

Receiver p0

deliver(m)

Receiver p1

deliver(m)

Receiver p2

?

Receiver p3

8 / 33

Consistent Broadcast

Validity

If a correct process s broadcasts m, then every correct process eventually

delivers m

Sender s

Receiver p0 Receiver p1

Receiver p2 Receiver p3

broadcast(m)

Sender s

Receiver p0 Receiver p1

Receiver p2 Receiver p3

broadcast(m)

Sender s

deliver(m)

Receiver p0

deliver(m)

Receiver p1

deliver(m)

Receiver p2

?

Receiver p3

8 / 33

Consistent Broadcast

Consistency

If p and p
0
are correct processes, p delivers m, and p

0
delivers m

0
, then

m=m
0

Receiver p Receiver p
0

deliver(m)

Receiver p

deliver(m
0
)

Receiver p
0

deliver(m)

Receiver p

deliver(m)

Receiver p
0

9 / 33

Consistent Broadcast

Consistency

If p and p
0
are correct processes, p delivers m, and p

0
delivers m

0
, then

m=m
0

Receiver p Receiver p
0

deliver(m)

Receiver p

deliver(m
0
)

Receiver p
0

deliver(m)

Receiver p

deliver(m)

Receiver p
0

9 / 33

Consistent Broadcast

Consistency

If p and p
0
are correct processes, p delivers m, and p

0
delivers m

0
, then

m=m
0

Receiver p Receiver p
0

deliver(m)

Receiver p

deliver(m
0
)

Receiver p
0

deliver(m)

Receiver p

deliver(m)

Receiver p
0

9 / 33

Consistent Broadcast

Integrity

If some correct process delivers m and s is correct, then s previously

broadcast m

Sender s Receiver p

Sender s

deliver(m)

Receiver p

broadcast(m)

Sender s

deliver(m)

Receiver p

10 / 33

Consistent Broadcast

Integrity

If some correct process delivers m and s is correct, then s previously

broadcast m

Sender s Receiver p

Sender s

deliver(m)

Receiver p

broadcast(m)

Sender s

deliver(m)

Receiver p

10 / 33

Consistent Broadcast

Integrity

If some correct process delivers m and s is correct, then s previously

broadcast m

Sender s Receiver pSender s

deliver(m)

Receiver p

broadcast(m)

Sender s

deliver(m)

Receiver p

10 / 33

Consistent Broadcast

Validity - If a correct process s broadcasts m, then every correct process

eventually delivers m

Consistency - If p and p
0
are correct processes, p delivers m, and p

0

delivers m
0
, then m=m

0

Integrity - If some correct process delivers m and s is correct, then s

previously broadcast m

11 / 33

Consistent Broadcast

Algorithm sketch, f = 1. Fast path

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m)

m

msg .read()

msg .read()

msg .read()
msg .write(m) msg .write(m) msg .write(m)

m m m

scan()

Receiver p

unanimity =) deliver m via fast path

Receiver p

12 / 33

Consistent Broadcast

Algorithm sketch, f = 1. Fast path

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m)

m

msg .read()

msg .read()

msg .read()
msg .write(m) msg .write(m) msg .write(m)

m m m

scan()

Receiver p

unanimity =) deliver m via fast path

Receiver p

12 / 33

Consistent Broadcast

Algorithm sketch, f = 1. Fast path

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m)

m

msg .read()

msg .read()

msg .read()
msg .write(m) msg .write(m) msg .write(m)

m m m

scan()

Receiver p

unanimity =) deliver m via fast path

Receiver p

12 / 33

Consistent Broadcast

Algorithm sketch, f = 1. Fast path

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m)

m

msg .read()

msg .read()

msg .read()

msg .write(m) msg .write(m) msg .write(m)

m m m

scan()

Receiver p

unanimity =) deliver m via fast path

Receiver p

12 / 33

Consistent Broadcast

Algorithm sketch, f = 1. Fast path

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m)

m

msg .read()

msg .read()

msg .read()

msg .write(m) msg .write(m) msg .write(m)

m m m

scan()

Receiver p

unanimity =) deliver m via fast path

Receiver p

12 / 33

Consistent Broadcast

Algorithm sketch, f = 1. Fast path

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m)

m

msg .read()

msg .read()

msg .read()
msg .write(m) msg .write(m) msg .write(m)

m m m

scan()

Receiver p

unanimity =) deliver m via fast path

Receiver p

12 / 33

Consistent Broadcast

Algorithm sketch, f = 1. Fast path

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m)

m

msg .read()

msg .read()

msg .read()
msg .write(m) msg .write(m) msg .write(m)

m m m

scan()

Receiver p

unanimity =) deliver m via fast path

Receiver p

12 / 33

Consistent Broadcast

Algorithm sketch, f = 1. Fast path

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m)

m

msg .read()

msg .read()

msg .read()
msg .write(m) msg .write(m) msg .write(m)

m m m

scan()

Receiver p

unanimity =) deliver m via fast path

Receiver p

12 / 33

Consistent Broadcast

Algorithm sketch, f = 1

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m0

); sgn.write(�0
) msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m
0 | �0

m | �s m | �s

scan()

Receiver p

n � f signed copies of m and

no m
0 6= m validly signed =) deliver m

Receiver p

13 / 33

Consistent Broadcast

Algorithm sketch, f = 1

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m0

); sgn.write(�0
) msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m
0 | �0

m | �s m | �s

scan()

Receiver p

n � f signed copies of m and

no m
0 6= m validly signed =) deliver m

Receiver p

13 / 33

Consistent Broadcast

Algorithm sketch, f = 1

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m0

); sgn.write(�0
) msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m
0 | �0

m | �s m | �s

scan()

Receiver p

n � f signed copies of m and

no m
0 6= m validly signed =) deliver m

Receiver p

13 / 33

Consistent Broadcast

Algorithm sketch, f = 1

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()

msg .write(m0
); sgn.write(�0

) msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m
0 | �0

m | �s m | �s

scan()

Receiver p

n � f signed copies of m and

no m
0 6= m validly signed =) deliver m

Receiver p

13 / 33

Consistent Broadcast

Algorithm sketch, f = 1

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()

msg .write(m0
); sgn.write(�0

) msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m
0 | �0

m | �s m | �s

scan()

Receiver p

n � f signed copies of m and

no m
0 6= m validly signed =) deliver m

Receiver p

13 / 33

Consistent Broadcast

Algorithm sketch, f = 1

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m0

); sgn.write(�0
) msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m
0 | �0

m | �s m | �s

scan()

Receiver p

n � f signed copies of m and

no m
0 6= m validly signed =) deliver m

Receiver p

13 / 33

Consistent Broadcast

Algorithm sketch, f = 1

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m0

); sgn.write(�0
) msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m
0 | �0

m | �s m | �s

scan()

Receiver p

n � f signed copies of m and

no m
0 6= m validly signed =) deliver m

Receiver p

13 / 33

Consistent Broadcast

Algorithm sketch, f = 1

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m0

); sgn.write(�0
) msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m
0 | �0

m | �s m | �s

scan()

Receiver p

n � f signed copies of m and

no m
0 6= m validly signed =) deliver m

Receiver p

13 / 33

Reliable Broadcast

Same properties as Consistent Broadcast + Totality

If some correct process delivers m, then every correct process eventually

delivers a message

Receiver p0 Receiver p1

Receiver p2 Receiver p3

Receiver p0

deliver(m)

Receiver p1

Receiver p2 Receiver p3

deliver(m)

Receiver p0

deliver(m)

Receiver p1

deliver(m)

Receiver p2

?

Receiver p3

14 / 33

Reliable Broadcast

Same properties as Consistent Broadcast + Totality

If some correct process delivers m, then every correct process eventually

delivers a message

Receiver p0 Receiver p1

Receiver p2 Receiver p3

Receiver p0

deliver(m)

Receiver p1

Receiver p2 Receiver p3

deliver(m)

Receiver p0

deliver(m)

Receiver p1

deliver(m)

Receiver p2

?

Receiver p3

14 / 33

Reliable Broadcast

Same properties as Consistent Broadcast + Totality

If some correct process delivers m, then every correct process eventually

delivers a message

Receiver p0 Receiver p1

Receiver p2 Receiver p3

Receiver p0

deliver(m)

Receiver p1

Receiver p2 Receiver p3

deliver(m)

Receiver p0

deliver(m)

Receiver p1

deliver(m)

Receiver p2

?

Receiver p3

14 / 33

Reliable Broadcast

Validity - If a correct process s broadcasts m, then every correct process

eventually delivers m

Consistency - If p and p
0
are correct processes, p delivers m, and p

0

delivers m
0
, then m=m

0

Integrity - If some correct process delivers m and s is correct, then s

previously broadcast m

Totality - If some correct process delivers m, then every correct process

eventually delivers a message

15 / 33

Consistent Broadcast vs Reliable Broadcast

Consistent and Reliable Broadcast behave the same way when the sender s

is correct (recall the Validity property)

Yet when the sender is faulty . . .

Consistent Broadcast has no delivery guarantees: some correct

processes may deliver a message, others may not

while Reliable Broadcast guarantees every correct process eventually

delivers a message as soon as one correct process delivered

16 / 33

Consistent Broadcast vs Reliable Broadcast

Consistent and Reliable Broadcast behave the same way when the sender s

is correct (recall the Validity property)

Yet when the sender is faulty . . .

Consistent Broadcast has no delivery guarantees: some correct

processes may deliver a message, others may not

while Reliable Broadcast guarantees every correct process eventually

delivers a message as soon as one correct process delivered

16 / 33

Consistent Broadcast vs Reliable Broadcast

Consistent and Reliable Broadcast behave the same way when the sender s

is correct (recall the Validity property)

Yet when the sender is faulty . . .

Consistent Broadcast has no delivery guarantees: some correct

processes may deliver a message, others may not

while Reliable Broadcast guarantees every correct process eventually

delivers a message as soon as one correct process delivered

16 / 33

Consistent Broadcast vs Reliable Broadcast

Consistent and Reliable Broadcast behave the same way when the sender s

is correct (recall the Validity property)

Yet when the sender is faulty . . .

Consistent Broadcast has no delivery guarantees: some correct

processes may deliver a message, others may not

while Reliable Broadcast guarantees every correct process eventually

delivers a message as soon as one correct process delivered

16 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0 Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0 Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0 Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0 Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()

msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0 Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()

msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0 Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0

Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0

Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0

Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0

Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0

Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()

msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0

Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()

msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0

Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s

m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0 Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s

m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Consistent Broadcast algorithm = ¬ su�cient

broadcast(m)

Sender s

Replicator r0 Replicator r1 Replicator r2

Receiver p0 Receiver p1

msg .write(m); sgn.write(�s)

m | �s

msg .read(); sgn.read()

msg .read(); sgn.read()
msg .write(m); sgn.write(�s) msg .write(m); sgn.write(�s)

m | �s

m | �s

scan()

Receiver p0

deliver m

Receiver p0

msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s

msg .read(); sgn.read()msg .write(m0
); sgn.write(�0

s) msg .write(m0
); sgn.write(�0

s)

m
0 | �0

s m
0 | �0

s

scan()

Receiver p1

no delivery

Receiver p1

17 / 33

Reliable Broadcast

Algorithm details

Init - Echo - Ready mechanism

Uses Consistent Broadcast

Similar delivery strategy to Consistent Broadcast: fast path, i.e., when

there is unanimity and otherwise when 9 n � f valid proof sets for m

19 / 33

Reliable Broadcast

Algorithm details

Init - Echo - Ready mechanism

Uses Consistent Broadcast

Similar delivery strategy to Consistent Broadcast: fast path, i.e., when

there is unanimity and otherwise when 9 n � f valid proof sets for m

19 / 33

Reliable Broadcast

Algorithm details

Init - Echo - Ready mechanism

Uses Consistent Broadcast

Similar delivery strategy to Consistent Broadcast: fast path, i.e., when

there is unanimity and otherwise when 9 n � f valid proof sets for m

19 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Fast path

Replicator r0 Replicator r1 Replicator r2

broadcast(m)

Sender s

Receiver p

cb-broadcast(hInit,mi)

broadcast(m)

Sender s

cb-deliver(hInit,mi)

Replicator r0

cb-deliver(hInit,mi)

Replicator r1

cb-deliver(hInit,mi)

Replicator r2

Echo.msg .write(m) Echo.msg .write(m) Echo.msg .write(m)

m

Echo

m

Echo

m

Echo

read()

Receiver p

unanimity =) deliver m via fast path

Receiver p

20 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Fast path

Replicator r0 Replicator r1 Replicator r2

broadcast(m)

Sender s

Receiver p

cb-broadcast(hInit,mi)

broadcast(m)

Sender s

cb-deliver(hInit,mi)

Replicator r0

cb-deliver(hInit,mi)

Replicator r1

cb-deliver(hInit,mi)

Replicator r2

Echo.msg .write(m) Echo.msg .write(m) Echo.msg .write(m)

m

Echo

m

Echo

m

Echo

read()

Receiver p

unanimity =) deliver m via fast path

Receiver p

20 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Fast path

Replicator r0 Replicator r1 Replicator r2

broadcast(m)

Sender s

Receiver p

cb-broadcast(hInit,mi)

broadcast(m)

Sender s

cb-deliver(hInit,mi)

Replicator r0

cb-deliver(hInit,mi)

Replicator r1

cb-deliver(hInit,mi)

Replicator r2

Echo.msg .write(m) Echo.msg .write(m) Echo.msg .write(m)

m

Echo

m

Echo

m

Echo

read()

Receiver p

unanimity =) deliver m via fast path

Receiver p

20 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Fast path

Replicator r0 Replicator r1 Replicator r2

broadcast(m)

Sender s

Receiver p

cb-broadcast(hInit,mi)

broadcast(m)

Sender s

cb-deliver(hInit,mi)

Replicator r0

cb-deliver(hInit,mi)

Replicator r1

cb-deliver(hInit,mi)

Replicator r2

Echo.msg .write(m) Echo.msg .write(m) Echo.msg .write(m)

m

Echo

m

Echo

m

Echo

read()

Receiver p

unanimity =) deliver m via fast path

Receiver p

20 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Fast path

Replicator r0 Replicator r1 Replicator r2

broadcast(m)

Sender s

Receiver p

cb-broadcast(hInit,mi)

broadcast(m)

Sender s

cb-deliver(hInit,mi)

Replicator r0

cb-deliver(hInit,mi)

Replicator r1

cb-deliver(hInit,mi)

Replicator r2

Echo.msg .write(m) Echo.msg .write(m) Echo.msg .write(m)

m

Echo

m

Echo

m

Echo

read()

Receiver p

unanimity =) deliver m via fast path

Receiver p

20 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Fast path

Replicator r0 Replicator r1 Replicator r2

broadcast(m)

Sender s

Receiver p

cb-broadcast(hInit,mi)

broadcast(m)

Sender s

cb-deliver(hInit,mi)

Replicator r0

cb-deliver(hInit,mi)

Replicator r1

cb-deliver(hInit,mi)

Replicator r2

Echo.msg .write(m) Echo.msg .write(m) Echo.msg .write(m)

m

Echo

m

Echo

m

Echo

read()

Receiver p

unanimity =) deliver m via fast path

Receiver p

20 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Fast path

Replicator r0 Replicator r1 Replicator r2

broadcast(m)

Sender s

Receiver p

cb-broadcast(hInit,mi)

broadcast(m)

Sender s

cb-deliver(hInit,mi)

Replicator r0

cb-deliver(hInit,mi)

Replicator r1

cb-deliver(hInit,mi)

Replicator r2

Echo.msg .write(m) Echo.msg .write(m) Echo.msg .write(m)

m

Echo

m

Echo

m

Echo

read()

Receiver p

unanimity =) deliver m via fast path

Receiver p

20 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Construction of ReadySet

Replicator r0 Replicator r1 Replicator r2

m
0

Echo

m

Echo

m

Echo

Ready ReadyReady

sgn.write(�r0) sgn.write(�r1) sgn.write(�r0)

m
0 | �r0

Echo

m | �r1

Echo

m | �r2

Echo

read()
read()

read()

msg .write(ReadySetr1 = {(m,�r1), (m,�r2)})

ReadySetr1

Ready

21 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Construction of ReadySet

Replicator r0 Replicator r1 Replicator r2

m
0

Echo

m

Echo

m

Echo

Ready ReadyReady

sgn.write(�r0) sgn.write(�r1) sgn.write(�r0)

m
0 | �r0

Echo

m | �r1

Echo

m | �r2

Echo

read()
read()

read()

msg .write(ReadySetr1 = {(m,�r1), (m,�r2)})

ReadySetr1

Ready

21 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Construction of ReadySet

Replicator r0 Replicator r1 Replicator r2

m
0

Echo

m

Echo

m

Echo

Ready ReadyReady

sgn.write(�r0) sgn.write(�r1) sgn.write(�r0)

m
0 | �r0

Echo

m | �r1

Echo

m | �r2

Echo

read()
read()

read()

msg .write(ReadySetr1 = {(m,�r1), (m,�r2)})

ReadySetr1

Ready

21 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Construction of ReadySet

Replicator r0 Replicator r1 Replicator r2

m
0

Echo

m

Echo

m

Echo

Ready ReadyReady

sgn.write(�r0) sgn.write(�r1) sgn.write(�r0)

m
0 | �r0

Echo

m | �r1

Echo

m | �r2

Echo

read()
read()

read()

msg .write(ReadySetr1 = {(m,�r1), (m,�r2)})

ReadySetr1

Ready

21 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Construction of ReadySet

Replicator r0 Replicator r1 Replicator r2

m
0

Echo

m

Echo

m

Echo

Ready ReadyReady

sgn.write(�r0) sgn.write(�r1) sgn.write(�r0)

m
0 | �r0

Echo

m | �r1

Echo

m | �r2

Echo

read()
read()

read()

msg .write(ReadySetr1 = {(m,�r1), (m,�r2)})

ReadySetr1

Ready

21 / 33

Reliable Broadcast

Algorithm sketch, f = 1. Construction of ReadySet

Replicator r0 Replicator r1 Replicator r2

m
0

Echo

m

Echo

m

Echo

Ready Ready

Ready

sgn.write(�r0) sgn.write(�r1) sgn.write(�r0)

m
0 | �r0

Echo

m | �r1

Echo

m | �r2

Echo

read()
read()

read()

msg .write(ReadySetr1 = {(m,�r1), (m,�r2)})

ReadySetr1

Ready

21 / 33

Icon credits

From the Noun Project
1
:

Server by nauraicon

Money bag by Mello

Robots by iconcheese

1https://thenounproject.com/
33 / 33

Outline
• Introduction
• 3 remarkable results with RDMA:

• Consensus with crash faults
• Broadcast with Byzantine faults
• Fast memory replication

Recall: Disaggregated Memory

p1 p2 p3 p4 p5

minority of memories
can fail

memories

processes

All-to-all
Connections

Replication: Treat all memories the same
Send all write/read requests to all memories, wait to
hear acknowledgement from majority

p1 p2 p3 p4 p5 p6

Instead of many faulty
memories, we can now think
of one non-faulty memory!

Handling Memory Failures

Exercise Show that this implements a regular register, but not an atomic register!

Reliable MRMW Atomic Register
• We want to implement an atomic MRMW register

on a set of unreliable (fault-prone) memories
• We want to minimize the number of round trips

(RTTs) per operation.
• Proven: cannot be solved s.t. each operation

always takes 1 RTT.
• But can it be done s.t. operations take 1 RTT most

of the time?
• To simplify the problem, we assume each memory

has plenty of max registers.

Max Registers
• Two operations: read and write
• Intuitively: read returns highest value written so far
• Formally:

• Validity: If read ! returns ", then either (a) " = ⊥, or (b)
some operation write(") was invoked before ! returns.

• Read-read monotonicity: If a read returns value $ and
a preceding read returns value %, then % ≤ $.

• Write-read monotonicity: If a read returns value $ and
a preceding write writes value %, then % ≤ $.

• Liveness (wait-freedom): Every invoked operation
eventually returns.

Step 1: Reliable Max Register
• Implement a reliable max register from a set of

unreliable max registers
• Writes should complete in 0-1 RTTs, reads should

complete in 1-2 RTTs.
• Common case: both operations should take 1 RTT.
• Hint: use caching.

Exercise

Reliable MR

p1 p2 p3 p4 p5 p6

Unreliable MRs

Step 2: Atomic MRMW Register

Classic Algorithm

2 RTTs

1 RTT

Why 2 RTTs for WRITE? Can we do better?

M = Reliable max register. Each value is a tuple (timestamp, id, value).
Lexicographic ordering.

Example

MR

P1 WRITE(A)

READ -> AP2

(TS = 0, ⊥)
(TS = 0, ⊥)

(TS = 1, A)
(TS = 1, A)

• Each write needs to use a fresh timestamp, i.e., higher than all preceding (why?)
• Finding a fresh timestamp takes 1 RTT.

2ndWRITE RTT is unavoidable.
1stWRITE RTT: Could we guess the timestamp?

Guessing Timestamps

MR

P1 WRITE(A)

READ -> AP2

(TS = 0, ⊥) (TS = 1,☢, A)
(TS = 1, A)

(TS = 1,✅, A)

“This timestamp is guessed”

W,R W

“This timestamp is verified”

Done in background, can return before it completes
-> does not count as RTT on critical path

Guessing Timestamps

MR

P1 WRITE(A)

READ -> AP2

(TS = 8, Z) (TS = 1,☢, A)
(TS = 9, A)

(TS = 9,✅, A)
W,R W✘

P1 attempts to write this but fails

What if guessed timestamp is wrong?

This is not (yet) correct!

Guessing Timestamps

MR

P1 WRITE(A)

P2

(TS = 1,☢, A) (TS = 3,✅, A)(TS = 0, ⊥)

P3 READ -> A READ -> B READ -> A

(TS = 2,☢, B)

WRITE(B)

Not atomic/linearizable L

Solution:

MR

P1 WRITE(A)

P2

(TS = 1,☢, A) (TS = 3,✅, A)(TS = 0, ⊥)

P3 READ -> A READ -> B READ -> A

(TS = 2,☢, B)

WRITE(B)

READ and WRITE need to communicate

If a READ (may have) returned my guessed timestamp,
then I must not write a confirmed timestamp

WRITE

Solution

MR

P1 WRITE(A)

(TS = 1,☢, A) (TS = 3,✅, A)(TS = 0, ⊥)

P3 READ -> A @ 1

If a READ (may have) returned my guessed timestamp,
then I must not write a confirmed timestamp

WRITE

try lock
exclusive

try lock
shared

vs

Putting It All Together

Write algorithm

guess a timestamp
write guessed ts + read current ts
if guessed ts is fresh:
write verified ts in bg

try to take exclusive lock
if successful, write fresh ts

if guessed ts is stale:

Common case: 1 RTT!

Putting It All Together

Read algorithm

read from MR
if ts is verified, return it

try to take shared lock
if successful, help reads & return

Common case: 1 RTT!

Putting It All Together

Read algorithm

What about all this
other stuff?

It’s for wait-freedom. Check out the paper for the full explanation:

“SWARM: Replicating Shared Disaggregated-Memory Data in No Time”

Further Reading
1. ABGMZ. The Impact of RDMA on Agreement. PODC

2019.
2. ABGMXZ. Microsecond Consensus for Microsecond

Applications. OSDI 2020.
3. ABGPXZ. Frugal Byzantine Computing. DISC 2021.
4. ABGMXZ. uBFT: Microsecond-Scale BFT using

Disaggregated Memory. ASPLOS 2023.
5. MBXZAG. SWARM: Replicating Shared

Disaggregated-Memory Data in No Time. SOSP 2024

