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From theory to practice

Theoretical

(design)

Practical

(design)

Practical

(implementation)

⚫ Impossibilities

⚫ Upper/Lower bounds

⚫ Techniques

⚫ System models

⚫ Correctness proofs 

Design 

(pseudo-code)

⚫ System models

⚫ shared memory

⚫ message passing

⚫ Finite memory

⚫ Practicality issues

⚫ re-usable objects

⚫ Performance

Design 

(pseudo-code,

prototype)

⚫ Hardware

⚫ Which atomic ops

⚫ Memory consistency

⚫ Cache coherence

⚫ Locality 

⚫ Performance

⚫ Scalability

Implementation 

(code)
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Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures
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Why do we use caching?

Core freq: 2GHz = 0.5 ns / instr

Core → Disk = ~ms

Core → Memory = ~100ns

Cache

• Large = slow

• Medium = medium

• Small = fast

Core

Disk

Cache

Memory
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Why do we use caching?

Core freq: 2GHz = 0.5 ns / instr

Core → Disk = ~ms

Core → Memory = ~100ns

Cache

• Core → L3 = ~20ns

• Core → L2 = ~7ns

• Core → L1 = ~1ns

Core

Disk

Memory

L3

L2

L1
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From typical server configurations a few years back to the ERA of Gen AI

Intel® Xeon®

• 14 cores @ 2.4GHz

• L1: 32KB

• L2: 256KB

• L3: 40MB

• Memory: 512GB

AMD Opteron™

• 18 cores @ 2.4GHz

• L1: 64KB

• L2: 512KB

• L3: 20MB

• Memory: 512GB
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https://www.intel.com/content/www/us/en/products/details/processors/xeon.html

Intel® Xeon® 6 Processors 
with P(erformance)-Cores
> 70 cores, > 400MB L3

&

Intel® Xeon® 6 Processors 
with E(nergy)-Cores
> 60 cores, > 90ML L3

https://www.amd.com/en/products/processors/server/epyc.html

AMD EPYC™ 9005 Series

Max config: 
192 cores, 384MB L3

&

AMD EPYC™ 9004, 8004, 
7003, 4004 Series

https://www.intel.com/content/www/us/en/products/details/processors/xeon.html
https://www.amd.com/en/products/processors/server/epyc.html


Experiment

Throughput of accessing some memory, 

depending on the memory size

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.9



Outline

• CPU caches
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• Placement of data

• Graph processing: Concurrent data structures
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Until ~2004: single-cores

Single core

Core freq: 3+GHz

Core → Disk

Core → Memory

Cache

• Core → L2

• Core → L1

Core

Disk

Memory

L2

L1
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After ~2004: multi-cores 

Multiple cores

Core freq: ~2GHz

Core → Disk

Core → Memory

Cache

• Core → shared L3

• Core → L2

• Core → L1

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1
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Private

multiple 

copies
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Cache coherence for consistency

Core 0 has X and Core 1

• wants to write on X

• wants to read X

• did Core 0 write or read X?

To perform a write

• invalidate all readers, or

• previous writer

To perform a read

• find the latest copy

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X
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Cache coherence with MESI

A state diagram

State (per cache line)

• Modified: the only dirty copy

• Exclusive: the only clean copy

• Shared: a clean copy

• Invalid: useless data

Which state is our “favorite?”
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The ultimate goal for scalability

A state diagram

State (per cache line)

• Modified: the only dirty copy

• Exclusive: the only clean copy

•Shared: a clean copy

• Invalid: useless data

= threads can keep the data close (L1 cache)

= faster
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Experiment

The effects of false sharing
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Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures
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Uniformity vs. non-uniformity

Typical desktop machine

Typical server machine

= Uniform
C C

CachesM
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Caches
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(aka. NUMA)
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Latency (ns) to access data in a NUMA multi-core server
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M
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L3

Conclusion: we need to take care of locality
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Experiment

The effects of locality
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Experiment

The effects of locality

vtrigona $ ./test_locality -x0 –y1
Size:            8 counters = 1 cache lines
Thread 0 on core : 0
Thread 1 on core : 2
Number of threads: 2
Throughput       : 104.27 Mop/s

vtrigona $ ./test_locality -x0 -y10
Size:            8 counters = 1 cache lines
Thread 0 on core : 0
Thread 1 on core : 10
Number of threads: 2
Throughput       : 43.16 Mop/s

Same memory node

Different memory nodes
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Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures
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Your Data is a Graph!

• Represent it as a property graph

• Entities are vertices

• Relationships are edges
• Annotate your graph

• Labels identify vertices and edges

• Properties describe vertices and edges
• For the purpose of

• Data modeling 

• Data analysis 

:Person
Name = “Vasilis”

:Institution
Name = “EPFL”

:Presented
Date=2024.12.06

Navigate multi-hop relationships quickly (instead of joins)
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Relational (Database) Model → Property Graph Model

user_id
(PK)

name

0 Vasilis

1 Rachid

… …

user_id post_id

0 0

0 1

1 1

author_id post_id
(PK)

title

1 0 EPFL

123 1 Oracle

… … …

users

user_likes

posts

graph ♥

:user
name=Vasilis

:user
name=Lucas

:post
title=EPFL

:post
title=Oracle

:li
ke

s

:author

Essentially having “materialized joins”

:li
ke

s
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Main Approaches of Graph Processing 

1. Computational graph analytics [ASPLOS’12, VLDB’16]

• Iterate the graph multiple times and compute 
mathematical properties using Greenmarl / PGX 
Algorithm (e.g., Pagerank)

• e.g, graph.getVertices().forEach(n -> …) 

2. Graph querying and pattern matching [GRADES’16/23, VLDB’16, Middleware Ind. 23]

• Query the graph using PGQL or SQL/PGQ to find sub-
graphs that match to the given relationship pattern

• e.g., SELECT … MATCH (a) –[edge]–> (b) …

3. Graph ML

• Use the structural information latent in graphs

• e.g., graph similarity

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.25

4. Vector similarity graph indices
• Hierarchical navigable 

small world (HNSW)
5. Graph RAG

• Retrieval-Augmented 
Generation (RAG)

• Enhancing RAG with 
knowledge graphs



Dissecting a graph processing system
with a focus on (concurrent) data structures
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Dissecting a graph processing system
and preparing for a job interview
with a focus on (concurrent) data structures
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Architecture of a graph processing system

Graph

Tons of other data and metadata to store
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graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad 

3 → Dexter 

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

Graph

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking 

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

1           2            3          4

{people, male} → {2,4} 
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graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • tmp graph structure
• append only
• dynamic schema
→ dataframe = segmented buffer

• Classic graph structures
1. adjacency matrix

2. adjacency list

3. compressed source row (CSR)

0 1 2

0 x

1 x x

2 x

0

1

2

0

0 2

1

1 3 4

0 0 2 1

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad 

3 → Dexter 

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.30



graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • Storing labels
• usually a small enumeration

e.g., person, female, male
• storing strings is expensive

“person” → ~ 7 bytes
• comparing strings is expensive
→ dictionary encoding, e.g.,

• person → 0
• female → 1
• male → 2

• Ofc, hash map to 
• store those
• translate during runtime

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad 

3 → Dexter 

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.31



graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • Property
• one type per property, e.g., int
• 1:1 mapping with vertices/edges
→ (sequential) arrays

• Lifetime management
(and other counters)
• cache coherence: atomic counters 

can be expensive
• Two potential solutions

1. approximate counters
2. stripped counters

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad 

3 → Dexter 

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary
Thread local: counter[0] counter[1] counter[2]

increment(int by) { counter[my_thread_id] += by; }

int value() {

int sum = 0;

for (int i = 0; i < num_threads; i++) { sum += counter[i]; }

return sum;

}
Copyright © 2024, Oracle and/or its affiliates. All rights reserved.32



graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad 

3 → Dexter 

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary (= map)

stripped counter

Structure # Usages

array / buffer 5

map 2

Score

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.
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buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1           2            3          4

{people, male} → {2,4} 

• Indices
• Used for speeding up “queries”

• Which vertices have label :person?
• Which edges have value > 1000?

→maps, trees

• Buffer management
• In “real” systems, resource 

management is very important
• buffer pools
• no order
• insertions and deletions
• no keys

→ Fixed num object pool: array
→ Otherwise: list
→ Variable-sized elements: heap
Copyright © 2024, Oracle and/or its affiliates. All rights reserved.34



buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1           2            3          4

{people, male} → {2,4} 

• Task and job scheduling
• producers create and share tasks
• consumers get and handle tasks
• insertions and deletions
• usually FIFO requirements
→ queues

• Storing / querying sets of labels
• set equality expensive
• usually common groups

e.g., {person, female}, {person, male}

→ 2-level dictionary encoding
• {person, female} → 0
• {person, male} → 1

• Giving unique ids (renaming)
→ tree, map, set, counter, other?

map / tree

array

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.
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buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1           2            3          4

{people, male} → {2,4} 

map / tree

array

queue

dictionary (= map)

map / tree / set

Structure # Usages

array / buffer 6

map 5

tree / heap 2

set 1

queue 1

Score
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distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Group by
1. Mapping from keys to values
2. Atomic value aggregations

e.g., COUNT, SUM, MAX
• insertion only
→ hash map
→ atomic inc / sum / max, etc.

• Join
• create a map of the small table
• insertion phase, followed by
• probing phase
→ hash map, lock-free probing

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.37



distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Distinct
• can be solved with sorting, or

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.
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distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Distinct
• can be solved with sorting, or
→ hash set

• Limit (top k)
• can be solved with sorting, or
• different specialized structures
→ tree
→ heap
→ ~ list
→ array (e.g., 2 elements only)
→ register (1 element only) 

map / atomics
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distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Breadth-first search (BFS)
• FIFO order
• track visited vertices
→ queue
→ set

• Depth-first search (DFS)
• LIFO order
• track visited vertices
→ stack
→ set

map / atomics

hash set

tree / heap / list

1

0

2

3 4
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distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

map / atomics

hash set

tree / heap / list

queue / set

stack / set

Structure # Usages

array / buffer 7

map 6

set 4

tree / heap 3

queue 2

stack 1

list 1

Score
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graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad 

3 → Dexter 

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary

array

stripped counter

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1           2            3          4

{people, male} → {2,4} 

map / tree

array

queue

dictionary

map / tree / set

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking 

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis

Rachid

Vasilis

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

DFS

map / atomics

hash set

tree / heap / list

queue / set

stack / setCopyright © 2024, Oracle and/or its affiliates. All rights reserved.
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Conclusions

• Both theory and practice are necessary for

• Designing, and 

• Implementing fast / scalable data structures

• Hardware plays a huge role on implementations

• How and which memory access patterns to use

• (Concurrent) Data structures 

• The backbone of every system

• An “open” and challenging area or research

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.43



Identify, explore, and transfer new technologies 
that have the potential to 

substantially improve Oracle's business.

Oracle Labs Mission Statement
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Visit the Oracle Labs Internship Page: labs.oracle.com/pls/apex/labs/r/labs/internships

or find our topics in EPFL’s portal 

• Automated Machine Learning with Explainability (AutoMLx)

• Cloud Security at Oracle

• Extending a Distributed Graph Engine (Oracle Labs PGX)

• Extending Application Dependency Management Cloud Service

• Extending a Web-Based Enterprise Data Science Platform

• Extending Oracle (Labs) Security and Compliance Applications

• Graph Machine Learning at Oracle

• Graph Support in the Oracle Database

• LLMs for Assistants and Code Generation at Oracle

• Machine Learning for Data Integration

• Machine Learning in Database Systems

• Oracle Database Multilingual Engine - Modern Programming Languages in the Database

or just send us an email at epfl-labs_ch@oracle.com

Internship and job opportunities

45
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Using the Oracle Cloud for free

Everybody
Oracle Cloud Always-Free Tier: oracle.com/cloud/free/

Universities and Schools
Oracle Academy: academy.oracle.com

Research Institutions
Oracle For Research: oracle.com/oracle-for-research/
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Our mission is to help people
see data in new ways, discover insights,
unlock endless possibilities.
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