
Concurrent programming:
From theory to practice

Vasileios Trigonakis

Consulting Member of Technical Staff

Oracle Labs Zurich

09.Dec.2024

Concurrent Computing 2024

From theory to practice

Theoretical

(design)

Practical

(design)

Practical

(implementation)

⚫ Impossibilities

⚫ Upper/Lower bounds

⚫ Techniques

⚫ System models

⚫ Correctness proofs

Design

(pseudo-code)

⚫ System models

⚫ shared memory

⚫ message passing

⚫ Finite memory

⚫ Practicality issues

⚫ re-usable objects

⚫ Performance

Design

(pseudo-code,

prototype)

⚫ Hardware

⚫ Which atomic ops

⚫ Memory consistency

⚫ Cache coherence

⚫ Locality

⚫ Performance

⚫ Scalability

Implementation

(code)
Copyright © 2024, Oracle and/or its affiliates. All rights reserved.3

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.4

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.5

Why do we use caching?

Core freq: 2GHz = 0.5 ns / instr

Core → Disk = ~ms

Core → Memory = ~100ns

Cache

• Large = slow

• Medium = medium

• Small = fast

Core

Disk

Cache

Memory

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.6

Why do we use caching?

Core freq: 2GHz = 0.5 ns / instr

Core → Disk = ~ms

Core → Memory = ~100ns

Cache

• Core → L3 = ~20ns

• Core → L2 = ~7ns

• Core → L1 = ~1ns

Core

Disk

Memory

L3

L2

L1

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.7

From typical server configurations a few years back to the ERA of Gen AI

Intel® Xeon®

• 14 cores @ 2.4GHz

• L1: 32KB

• L2: 256KB

• L3: 40MB

• Memory: 512GB

AMD Opteron™

• 18 cores @ 2.4GHz

• L1: 64KB

• L2: 512KB

• L3: 20MB

• Memory: 512GB

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.8

https://www.intel.com/content/www/us/en/products/details/processors/xeon.html

Intel® Xeon® 6 Processors
with P(erformance)-Cores
> 70 cores, > 400MB L3

&

Intel® Xeon® 6 Processors
with E(nergy)-Cores
> 60 cores, > 90ML L3

https://www.amd.com/en/products/processors/server/epyc.html

AMD EPYC™ 9005 Series

Max config:
192 cores, 384MB L3

&

AMD EPYC™ 9004, 8004,
7003, 4004 Series

https://www.intel.com/content/www/us/en/products/details/processors/xeon.html
https://www.amd.com/en/products/processors/server/epyc.html

Experiment

Throughput of accessing some memory,

depending on the memory size

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.9

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.10

Until ~2004: single-cores

Single core

Core freq: 3+GHz

Core → Disk

Core → Memory

Cache

• Core → L2

• Core → L1

Core

Disk

Memory

L2

L1

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.11

After ~2004: multi-cores

Multiple cores

Core freq: ~2GHz

Core → Disk

Core → Memory

Cache

• Core → shared L3

• Core → L2

• Core → L1

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.

Private

multiple

copies

12

Cache coherence for consistency

Core 0 has X and Core 1

• wants to write on X

• wants to read X

• did Core 0 write or read X?

To perform a write

• invalidate all readers, or

• previous writer

To perform a read

• find the latest copy

Core 0

L3

L2

Core 1

Disk

Memory

L2

L1L1X

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.13

Cache coherence with MESI

A state diagram

State (per cache line)

• Modified: the only dirty copy

• Exclusive: the only clean copy

• Shared: a clean copy

• Invalid: useless data

Which state is our “favorite?”

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.14

The ultimate goal for scalability

A state diagram

State (per cache line)

• Modified: the only dirty copy

• Exclusive: the only clean copy

•Shared: a clean copy

• Invalid: useless data

= threads can keep the data close (L1 cache)

= faster

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.15

Experiment

The effects of false sharing

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.16

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.17

Uniformity vs. non-uniformity

Typical desktop machine

Typical server machine

= Uniform
C C

CachesM
e

m
o

ry
M

e
m

o
ry

CachesM
e

m
o

ry C C C C

Caches

C
M

e
m

o
ry

C C C

= non-Uniform

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.

(aka. NUMA)

18

Latency (ns) to access data in a NUMA multi-core server

C C
M

e
m

o
ry

C
M

e
m

o
ry

C

L1

L2

L3

L1

L2L2

L1

L2

L1

L3

Conclusion: we need to take care of locality

1

7

40

80

90 130

20

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.19

Experiment

The effects of locality

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.20

Experiment

The effects of locality

vtrigona $./test_locality -x0 –y1
Size: 8 counters = 1 cache lines
Thread 0 on core : 0
Thread 1 on core : 2
Number of threads: 2
Throughput : 104.27 Mop/s

vtrigona $./test_locality -x0 -y10
Size: 8 counters = 1 cache lines
Thread 0 on core : 0
Thread 1 on core : 10
Number of threads: 2
Throughput : 43.16 Mop/s

Same memory node

Different memory nodes

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.21

Outline

• CPU caches

• Cache coherence

• Placement of data

• Graph processing: Concurrent data structures

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.22

Your Data is a Graph!

• Represent it as a property graph

• Entities are vertices

• Relationships are edges
• Annotate your graph

• Labels identify vertices and edges

• Properties describe vertices and edges
• For the purpose of

• Data modeling

• Data analysis

:Person
Name = “Vasilis”

:Institution
Name = “EPFL”

:Presented
Date=2024.12.06

Navigate multi-hop relationships quickly (instead of joins)

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.23

Relational (Database) Model → Property Graph Model

user_id
(PK)

name

0 Vasilis

1 Rachid

… …

user_id post_id

0 0

0 1

1 1

author_id post_id
(PK)

title

1 0 EPFL

123 1 Oracle

… … …

users

user_likes

posts

graph ♥

:user
name=Vasilis

:user
name=Lucas

:post
title=EPFL

:post
title=Oracle

:li
ke

s

:author

Essentially having “materialized joins”

:li
ke

s

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.24

Main Approaches of Graph Processing

1. Computational graph analytics [ASPLOS’12, VLDB’16]

• Iterate the graph multiple times and compute
mathematical properties using Greenmarl / PGX
Algorithm (e.g., Pagerank)

• e.g, graph.getVertices().forEach(n -> …)

2. Graph querying and pattern matching [GRADES’16/23, VLDB’16, Middleware Ind. 23]

• Query the graph using PGQL or SQL/PGQ to find sub-
graphs that match to the given relationship pattern

• e.g., SELECT … MATCH (a) –[edge]–> (b) …

3. Graph ML

• Use the structural information latent in graphs

• e.g., graph similarity

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.25

4. Vector similarity graph indices
• Hierarchical navigable

small world (HNSW)
5. Graph RAG

• Retrieval-Augmented
Generation (RAG)

• Enhancing RAG with
knowledge graphs

Dissecting a graph processing system
with a focus on (concurrent) data structures

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.26

Dissecting a graph processing system
and preparing for a job interview
with a focus on (concurrent) data structures

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.27

Architecture of a graph processing system

Graph

Tons of other data and metadata to store

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.28

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

Data
Data

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad

3 → Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

Graph

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

1 2 3 4

{people, male} → {2,4}

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.29

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • tmp graph structure
• append only
• dynamic schema
→ dataframe = segmented buffer

• Classic graph structures
1. adjacency matrix

2. adjacency list

3. compressed source row (CSR)

0 1 2

0 x

1 x x

2 x

0

1

2

0

0 2

1

1 3 4

0 0 2 1

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad

3 → Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.30

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • Storing labels
• usually a small enumeration

e.g., person, female, male
• storing strings is expensive

“person” → ~ 7 bytes
• comparing strings is expensive
→ dictionary encoding, e.g.,

• person → 0
• female → 1
• male → 2

• Ofc, hash map to
• store those
• translate during runtime

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad

3 → Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.31

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph • Property
• one type per property, e.g., int
• 1:1 mapping with vertices/edges
→ (sequential) arrays

• Lifetime management
(and other counters)
• cache coherence: atomic counters

can be expensive
• Two potential solutions

1. approximate counters
2. stripped counters

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad

3 → Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary
Thread local: counter[0] counter[1] counter[2]

increment(int by) { counter[my_thread_id] += by; }

int value() {

int sum = 0;

for (int i = 0; i < num_threads; i++) { sum += counter[i]; }

return sum;

}
Copyright © 2024, Oracle and/or its affiliates. All rights reserved.32

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad

3 → Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary (= map)

stripped counter

Structure # Usages

array / buffer 5

map 2

Score

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.

array

33

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male} → {2,4}

• Indices
• Used for speeding up “queries”

• Which vertices have label :person?
• Which edges have value > 1000?

→maps, trees

• Buffer management
• In “real” systems, resource

management is very important
• buffer pools
• no order
• insertions and deletions
• no keys

→ Fixed num object pool: array
→ Otherwise: list
→ Variable-sized elements: heap
Copyright © 2024, Oracle and/or its affiliates. All rights reserved.34

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male} → {2,4}

• Task and job scheduling
• producers create and share tasks
• consumers get and handle tasks
• insertions and deletions
• usually FIFO requirements
→ queues

• Storing / querying sets of labels
• set equality expensive
• usually common groups

e.g., {person, female}, {person, male}

→ 2-level dictionary encoding
• {person, female} → 0
• {person, male} → 1

• Giving unique ids (renaming)
→ tree, map, set, counter, other?

map / tree

array

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.
35

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male} → {2,4}

map / tree

array

queue

dictionary (= map)

map / tree / set

Structure # Usages

array / buffer 6

map 5

tree / heap 2

set 1

queue 1

Score

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.36

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Group by
1. Mapping from keys to values
2. Atomic value aggregations

e.g., COUNT, SUM, MAX
• insertion only
→ hash map
→ atomic inc / sum / max, etc.

• Join
• create a map of the small table
• insertion phase, followed by
• probing phase
→ hash map, lock-free probing

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.37

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Distinct
• can be solved with sorting, or

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.

map / atomics

38

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Distinct
• can be solved with sorting, or
→ hash set

• Limit (top k)
• can be solved with sorting, or
• different specialized structures
→ tree
→ heap
→ ~ list
→ array (e.g., 2 elements only)
→ register (1 element only)

map / atomics

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.39

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

• Breadth-first search (BFS)
• FIFO order
• track visited vertices
→ queue
→ set

• Depth-first search (DFS)
• LIFO order
• track visited vertices
→ stack
→ set

map / atomics

hash set

tree / heap / list

1

0

2

3 4

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.

1

0

3

2 4

40

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking bad

Rachid, Dexter

Vasilis, Dexter

Vasilis, 2

Rachid, 1

Vasilis

Rachid

Vasilis

Vasilis

Rachid

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

32

23

13

DFS

map / atomics

hash set

tree / heap / list

queue / set

stack / set

Structure # Usages

array / buffer 7

map 6

set 4

tree / heap 3

queue 2

stack 1

list 1

Score

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.41

graph structure

tmp graph structure
“Vasilis”, “Breaking bad”, :likes

“Rachid”, “Dexter”, :likes

“Vasilis”, “Dexter”, :likes

“Dexter”, “Breaking bad”, :similar

“Breaking bad”, “Dexter”, :similar

Graph

user-ids - internal ids
Vasilis → 0

Rachid → 1

Breaking bad → 2

Dexter → 3

0 → Vasilis

1 → Rachid

2 → Breaking bad

3 → Dexter

labels

:likes, :people, :similar, …

properties
“Vasilis”, {people, male}, 20, Zurich

“Rachid”, {people, male}, ??, Lausanne

lifetime management
number_of_references: X

segmented buffer

CSR

hash map / array

dictionary

array

stripped counter

buffer management

task / job scheduling

labels

:likes, :people, :similar, :male …

renaming (ids)

Runtime

indices / metadata

< 300 >= 300

1MB 1MB 1MB 1MB

Producers Consumers
task

task

used used used

1 2 3 4

{people, male} → {2,4}

map / tree

array

queue

dictionary

map / tree / set

distinct

limit (top k)

BFS

Operations

group by / join
Vasilis, Breaking

bad

Rachid, Dexter

Vasilis, Dexter

Vasilis

Rachid

Vasilis

11 12 0 9 8 13

8 9 11 23 32 9

1 2 3 5 7 3 2 0

DFS

map / atomics

hash set

tree / heap / list

queue / set

stack / setCopyright © 2024, Oracle and/or its affiliates. All rights reserved.

Y
o

u
r

n
e

w
 c

h
e

a
ts

h
e

e
t

fo
r

in
te

rv
ie

w
s!

42

Conclusions

• Both theory and practice are necessary for

• Designing, and

• Implementing fast / scalable data structures

• Hardware plays a huge role on implementations

• How and which memory access patterns to use

• (Concurrent) Data structures

• The backbone of every system

• An “open” and challenging area or research

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.43

Identify, explore, and transfer new technologies
that have the potential to

substantially improve Oracle's business.

Oracle Labs Mission Statement

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.44

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.

Visit the Oracle Labs Internship Page: labs.oracle.com/pls/apex/labs/r/labs/internships

or find our topics in EPFL’s portal

• Automated Machine Learning with Explainability (AutoMLx)

• Cloud Security at Oracle

• Extending a Distributed Graph Engine (Oracle Labs PGX)

• Extending Application Dependency Management Cloud Service

• Extending a Web-Based Enterprise Data Science Platform

• Extending Oracle (Labs) Security and Compliance Applications

• Graph Machine Learning at Oracle

• Graph Support in the Oracle Database

• LLMs for Assistants and Code Generation at Oracle

• Machine Learning for Data Integration

• Machine Learning in Database Systems

• Oracle Database Multilingual Engine - Modern Programming Languages in the Database

or just send us an email at epfl-labs_ch@oracle.com

Internship and job opportunities

45

https://labs.oracle.com/pls/apex/labs/r/labs/internships
mailto:epfl-labs_ch@oracle.com

Using the Oracle Cloud for free

Everybody
Oracle Cloud Always-Free Tier: oracle.com/cloud/free/

Universities and Schools
Oracle Academy: academy.oracle.com

Research Institutions
Oracle For Research: oracle.com/oracle-for-research/

Copyright © 2024, Oracle and/or its affiliates. All rights reserved.46

https://www.oracle.com/cloud/free/
https://academy.oracle.com/
https://www.oracle.com/oracle-for-research/

Our mission is to help people
see data in new ways, discover insights,
unlock endless possibilities.

	Header
	Slide 1: Concurrent programming: From theory to practice

	Theory-to-Practice
	Slide 3: From theory to practice
	Slide 4: Outline
	Slide 5: Outline
	Slide 6: Why do we use caching?
	Slide 7: Why do we use caching?
	Slide 8: From typical server configurations a few years back to the ERA of Gen AI
	Slide 9
	Slide 10: Outline
	Slide 11: Until ~2004: single-cores
	Slide 12: After ~2004: multi-cores
	Slide 13: Cache coherence for consistency
	Slide 14: Cache coherence with MESI
	Slide 15: The ultimate goal for scalability
	Slide 16
	Slide 17: Outline
	Slide 18: Uniformity vs. non-uniformity
	Slide 19: Latency (ns) to access data in a NUMA multi-core server
	Slide 20
	Slide 21
	Slide 22: Outline
	Slide 23: Your Data is a Graph!
	Slide 24: Relational (Database) Model  Property Graph Model
	Slide 25: Main Approaches of Graph Processing
	Slide 26: Dissecting a graph processing system
	Slide 27: Dissecting a graph processing system and preparing for a job interview
	Slide 28: Architecture of a graph processing system
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Conclusions

	Outro
	Slide 44: Identify, explore, and transfer new technologies that have the potential to substantially improve Oracle's business.
	Slide 45: Internship and job opportunities
	Slide 46: Using the Oracle Cloud for free
	Slide 47: Our mission is to help people see data in new ways, discover insights, unlock endless possibilities.

