
Old Algorithms for New Problems
Theory, Practice, & Stories about Tendermint

� / AdiSeredinschi
adi@informal.systems

M. Nweke @ artstation.com



M. Nweke @ artstation.com



About "Sapiens" book

Simplifications are not
always bad

- simplifications as a starting point
* not an end or a scientific result

- simplifications can also be important when
applying in practice a theory or an algorithm

- especially in distributed systems

"Same as Ever" by M. Housel

- indeed, Harari cut some corners

- yet he knew his goal & audience
* communicate to the general public
* inspire, educate, elevate others
* essential <-> non-essential
* simplify



Roadmap

1. Simplify

2. Productionize

3. Commoditize

Old Algorithms for New Problems

M. Nweke @ artstation.com



Simplifying,
and the Tendermint algorithm

- represents the meeting of theory <> practice
circa 2013

- some constraints brought from practice:
* for decentralized ledgers
* builds on a gossip network
* rotate leaders all the time
* PoS & membership

- main novelty:
* the simplified termination mechanism
* unified graceful & degraded paths

- like "Sapiens" --
it was wrong the first couple of times..



...

Start consensus
on block height H

round 0

P0 -
P1 correctly
broadcasts
a Propose

P2 correctly
broadcasts
Prevote

P3 correctly
broadcasts
Prevote

P1 locks
on

and broadcasts
Precommit

&
Precommit

&
Precommit

P1, P2, and P3 decide
on value

P2 locks
on

P3 locks
on

P1 correctly
broadcasts
Prevote

P0

P1
proposer

P2

P3

faulty

L18:19 L40

L36:43

L49:54

L24

L24

L24

PROPOSE PRECOMMITPREVOTE

PREVOTE

PREVOTE

m1 m1

m1

m1

m1 m1

m1

m1

m1

m1 m1

Tendermint refresher
propose prevote precommit



Simplifications
beyond the algorithm

ABCI interface

ABCI

* A consensus engine

* Originally called "Tendermint Core"

* Implements Tendermint algorithm

* A lot of "batteries included"

* discovery
* RPC server
* mempool
* indexer
* write-ahead log

* a simple broadcast/deliver API
* the "narrow waist" of decentralized
applications

mempool .. RPC

Simplified adoption by users

CometBFT

Application

Networking

Tendermint ..



Roadmap

1. Simplify

2. Productionize

3. Commoditize

Old Algorithms for New Problems

https://www.artstation.com/artwork/0n4d4G



* Handling tens to hundreds of corner-cases
* Sanitizing assumptions made during during design
* Making clear promises w.r.t. performance (& other dimensions)

* New features & improvements -> new problem statements

* Ensuring scale of ~100 validators
* Configuration params, all the "batteries" included
* Logs, metrics & observability
* Timeout commit
* The gossip property

Regular maintenances and releases

Specifically

interoperability

mempool

abstraction

What does it mean to productionize?

Generally



https://www.ibcprotocol.dev/

- Why is it challenging?
(1) SMR-to-SMR communication is O(n^2)
(2) Dynamic validator set changes

- Light client protocol allows verification of
(a) block headers that validators produced
(b) application state

New problem: Interoperability

IBC protocol & light clients

"Make two CometBFT applications interoperate"



New problem: Mempool

CAT mempool DOG protocol

"The CometBFT mempool is too bandwidth intensive"

* Content-addressable transactions

* Used in Celestia blockchain

* Push-pull model

* Impacts latency

* Works better for larger transactions

* Regularly "trims" redundant dissemination paths

* Requires tuning

* Dynamic Optimal Graph

* State of the art in Comet mempool efficiency

* Push model w/ redundancy control

SeenTx(hash)Forward Forward Forward

HaveTxWant(hash)A AB BC C



New problem: Abstractions
"ABCI is too restrictive, the application needs more control"

Control flow is simple & sequential, at the end of block lifecyle

Decide on a block
of transactions

Block

App

BeginBlock DeliverTX EndBlock
...

ABCI v0

CometBFT

Start consensus
on block height H

Start consensus
on block height H+1

Control over the block lifecycle
goes from CometBFT to the application

and then back to CometBFT

prevotes precommits



Old algorithm -- with slight modifications -- for a new problem

Decide on a block
of transactionsProposal

creation
Proposal
creation

Block

PrepareProposal PrepareProposalFinalizeBlockProcessProposal ExtendVote VerifyVoteExtension

Proposal
validation

Send
Precommit

Receive
Precommit

executes at the
block Proposer executes at the

block Proposer

ABCI v2

CometBFT

App

Deliver vote_extensions
of block H-1

Deliver vote_extensions
of block H

Deliver entire
block for height H

Start consensus
on block height H

Start consensus
on block height H+1

executes at all nodes, including non-validating nodes

Validate the
proposed block
for height H.

Append arbitrary
data to the block
for height H+1, i.e.,
a vote_extension

Validate each
vote_extension
for block
height H+1Constructs block for

height H to be proposed.
Constructs block for
height H+1 to be proposed.

Start consensus
on block height H

Start consensus
on block height H+1

prevotes precommits



We discussed:

* Timeout commit
* The gossip property
* IBC & interop
* Mempool 🐈 & 🐕
* ABCI extensions

We did not discuss today:

* Non-mempool efficiency
* Transport stack (e.g. QUIC, libp2p)
* Decorrelation of various sub-systems
called reactors

Productionize - summary

Why is it difficult?
- Requires specific knowledge
- Extensive E2E and QA testing
- Inertia: changes versus new features

Commoditize



Roadmap

1. Simplify

2. Productionize

3. Commoditize

Old Algorithms for New Problems

https://www.doscher-design.com/



What does it mean to commoditize?



Both implement the Tendermint algorithm

OSS & Long-term maintenance

Scale: O(100s) nodes

Go

Monolithic

Many "batteries" included

Build blockchains (i.e., Layer 1s)

Rust

Modular

Small & extensible

Build whatever: sequencers, provers, .. ?



The most flexible consensus API in the world

Consensus

Host

Library

Executable

InputEffect

Message

* Driver
* State Machine
* VoteKeeper
* Params
..

malachite_consensus::process!(
event: Event::StartHeight(1),
state: &mut state,
on: effect => handle_effect(effect)
)

enum Event {
StartHeight(Height)
TimeoutElapsed(Timeout)
ProposeValue(Height, Round, Value)
ReceiveVote(SignedVote)
ReceiveProposal(SignedProposal)
ReceiveProposedValue(ProposedValue)
}

Entrypoint

Inputs for the consensus library:

// Event to process
// Consensus state
// Effect handler



Malachite-based application architecture

Host

Block sync

WAL

Consensus sync

Adapter(s)

Mempool App

??

Block building
and execution

P2P & gossip Peer discovery

Tendermint
consensus

library

- Lean, simple core

- Actor-based model

- Message passing

- Lower entry barrier

- We don't know what
is needed next



Open areas of R&D
* Starknet L2 dec. sequencer & Quint specs

* Integration with Reth

* Upgradeability

* Direct validator links (not gossip)

* Node discovery & DOG protocol

* Loopback

* Algorithm variants
- Vote Extensions
- 5f + 1
- Multi-proposer
- Signature aggregation

It should be faster and
less error-prone to

demonstrate these extensions
with Malachite than
with other libraries

new problems



Informal Systems AG

* Lausanne, Zurich, Toronto, Berlin ..

* Core R&D, formal methods, and security audits in
the decentralization industry (Cosmos, Ethereum, Bitcoin universe)

https://informal.systems/careers
We are hiring!



References

"Same as Ever," M. Housel "Sapiens," Y. Harari

Braithwaite, Sean, et al. "A tendermint light client."
arXiv preprint arXiv:2010.07031 (2020).

"The gossip property in Tendermint"
https://www.adi.monster/the-gossip-property-in-tendermint/

https://github.com/cometbft ..
/docs/references/architecture/adr-119-dog-mempool-gossip.md

https://github.com/cometbft/cometbft ..
docs/rfc/tendermint-core/rfc-013-abci%2B%2B.md


