Generalized Universality

Once upon a time

'H* uum.} u&ql
vy wyy ! ‘9‘!‘9‘.-

Universality

Algorithm

A finite set of instructions

The only intelligence required is to
compute the instructions

Must always produce a result

1 Ovagram of & Turing Machine

Figwra 1 Ovagram of & Turing Machine

Figwra 1 Ovagram of & Turing Machine

Communication

Communication

Algorithm

A finite set of precise instructions

The only intelligence required is to
compute the instructions

Must always produce a result

NB. Despite concurrency and failures

5

Universality Today?

?

sM - Consensus N sM

HE 1)
' e, Ny
‘, —,_ I /r LA
v- -' g] \)
' (&1)

Ny d
vy
V/S
NS
\ Figure 1 Diagram of a T
\

{ !
\

~

Figure 1 Dragram of a Turing Machine

Universality of Consensus

Linearizable Highly-available
(atomic) (wait-free)

Act1: Universality

Act 2: Modern Universality

Consensus

Processes propose each a value and agree on one

output = propose(input)

pl) 2
—c consensus p

Universal Construction

Each process holds a copy of the - simulated - machine

Each process holds a list of commands for the machine

All processes share a list of consensus objects

10

sM

Universal Construction

consl

cons2

conskK

sM

11

Universal Construction

while(true)

c = commands.next()
cons = Consensus.next()

C' = cons.propose(c)
sM.perform(c’)

12

sM+cl

sM+cl'’

Universal Construction

consl

cons2

conskK

sM+cl

sM+cl’

13

What if consensus is not ensured?

Figwre 1 Ovagram ofs 'me

’w.] M.m of s 'me

Consensus

14

K-Consensus

Every process proposes a vector of k values and
returns a value at some position (Chauduri et al)

(i,c) = propose(kVect)

vect
vect

pl
«—— k-consensus

(1,c) (1" ,c’)

15

K-Consensus

» Validity: the value returned at any position has
been proposed at that position

= Agreement. no two values returned at the same
position are different

= Termination: every correct process that
proposes eventually returns

16

k+1-consensus is strictly weaker than k-consensus
In any system of more than k+1 processes

(Godel prize 2004 — HS,BG,SZ 93)

2 3
Sperner’'s Lemma: at least one triangle has three cglors

What form of universality with

K-consensus?

With consensus
We implement a hiahly-available state machine

With k-consensus

We implement k state machines of which at least
one is highly-available

Generalized Universality

18

Act1: Universality

Act 2: Modern Universality

Act 3: Generalized Universality

Generalized Universality

Each process holds a copy of each of the machines
sM(i) - and a lists of commands for each

VectConsl

pl p2

(sM1,sM2) (sM1,sM2)
VectCons?2

The processes share a list of k-vector consensus objects

20

Universal Construction

while(true)
c = commands.next()
cons = consensus.next()

Cc' = cons.propose(c)
sM.perform(c’)

21

sM

Universal Construction

cl

consl

cons2

conskK

cl’

cl

sM

22

Generalized Universality?

while(true)
for j =1 to ki com(j) = commands(j).next()
kVectC = kVectCons.next()

(c,I) = kVectC.propose(com)
sM(i).perform(c)

23

Problem with safety

pl p2
(sM1,sM2) (sM1,sM2)
(cl,c2) (cl’ ,c2’)
(1,cl) (2.c2")
(dl, c2)
SM2+c2 VectCons?2
(2,c2)

24

Generalized Universality

while(true)

for j =1 to ki com(j) = commands(j).next()
kVectC = kVectCons.next()

(c,1) = kVectC.propose(com)

check other processes for any missing c’
sM(i).perform(c)

inform other processes about c

25

Generalized Universality

pl
p2
(sM1,sM2)
(cl,c2) (sM1,sM2)
sMl+cl - VectConsl (cl’,c2’)
(1,cl) | sM2+4c2’
cl (2.C2')
Share
Share
- (dl,c2) VectCons?2
(2,c2)

26

1st key idea (ensuring safety)

cl c2

D ————————

commit (c)

D ———————

adopt/commit

adopt (c)

write (c)
iIf there is only c, write (commit, c)
if there is only (commit, c), return(commit, c)

if there is (commit, ¢’), return(adopt, c’)
else return (adopt, c)

27

Adopt/commit

» Invariant (1). if a value v is committed then no other
value is returned

» Invariant (2). if all processes propose the same
value then the value is committed

28

Generalized Universality
pl P2

(sM1, sM2) (sM1, sM2

(1,cl) VectConsl

(2.c27)

cl skip
adopt/commit (1) <

&

commit (cl)

sMl+cl

. c2’
sk1p |adopt/commit (2)| «——

_

commit (c2’|)

29

Problem with liveness

p2
(sM1,sM2
(1,cl) VectConsl (2.c2")
cl skip
adopt/commit (1) <
adopt (cl)
c2’

sk1p |adopt/commit (2)| «——

_

adopt (c2’)

30

2nd key idea (ensuring liveness)

Exploit success first

cl c2

D ————————
D ——————————

adopt/commit
adopt (cl) adopt (c2)

Can it be that no command is committed? i.e., if every
adopt/commit box has one process proposes skip

31

Generalized universality (step 0)

* newCom = commands.next()
= while(true)

= kVectC = kVectCons.next()

32

Generalized universality (step 1)

* (c,i) = kVectC.propose(newCom)

33

Generalized universality (step1-2)

= (c,i) = kVectC.propose(newCom)
= vect(i) = commitment(i,c)

34

Generalized universality (step1-2-2’)
= (c,i) = kVectC.propose(newCom)
= vect(i) = commitment(i,c)

= forj=11to k except i:
= vect(j) = commitment(newCom(j))

35

Generalized universality (step 3)

fori=1tok
= if ok(vect(i)) then

= sM(i).perform(vect(i))

= newCom(i) = commands(i).next()
= else

* newCom(i) = vect(i)

36

Generalized universality (step 3')

fori=1tok

If older(newCom(i),vect(i)) then
sM(i).perform(newCom(i))

If no(vect(i)) then newCom(i) = vecit(i)
else
sM(i).perform(vecit(i))

If vect(i) = newCom(i) then

* newCom(i) = commands(i).next()
add(newCom(i),vect(i))

37

Commitment

= Safety: a process does not perform a command
unless all others know the command

= Liveness: at least one process executes a
command in every round

NB. Every correct process executes at least one
command every two rounds

38

Act1: Universality

Act 2: Modern Universality

Act 3: Generalized Universality

