
244 8 Snapshot Objects from Read/Write Registers Only

For the containment property, let us consider two processes pi and p j that stop at
stairs ki , and k j , respectively. Without loss of generality, let ki ≤ k j . Due to Lemma
20, there are exactly ki processes on the stairs 1 to ki , and k j processes on stairs 1 to
k j ≤ ki . As no process backtracks on the stairway (a process proceeds downwards
or stops), the set of k j processes returned by p j includes the set of k1 processes
returned by pi .

Let us finally consider the immediacy property. Let us first observe that a process
deposits its value before starting its descent of the stairway (line 1), from which it
follows that, if j ∈ seti , REG[j] contains the value v j deposited by p j . Moreover,
it follows from lines 4 and 5 that, if a a process p j stops at a stair k j and then
i ∈ set j , then pi stopped at a stair ki ≤ k j . It then follows from Lemma 20 that the
set set j returned by p j includes the set seti returned by pi , from which follows the
immediacy property. �

8.5.4 A Recursive Implementation
of a One-Shot Immediate Snapshot Object

This section describes a recursive implementation of a one-shot immediate snapshot
object due to E. Gafni and S. Rajsbaum (2010). This construction can be seen as a
recursive formulation of the previous iterative algorithm.

Underlying data structure As we are about to see, when considering distributed
computing, an important point that distinguishes distributed recursion from sequen-
tial recursion on data structures lies in the fact that the recursion parameter is usually
the number n of processes involved in the computation. The recursion parameter is
used by a process to compute a view of the concurrency degree among the partici-
pating processes.

The underlying data structure representing the immediate snapshot object consists
of a shared array REG[1..n] such that each REG[x] is an array of n SWMR atomic
registers. The aim of REG[x], which is initialized to [⊥, . . . ,⊥], is to contain the
view obtained by the processes that see exactly x other processes in the system. For
any x , REG[x] is accessed only by the processes that attain recursion level x and the
atomic register REG[x][i] can be read by all these processes but can be written only
by pi .

The recursive algorithm implementing the operation update_snapshot() The
algorithm is described in Fig. 8.16. Its main call is an invocation of rec_update
_snapshot(n, vi), where n is the initial value of the recursion parameter and vi

the value that pi wants to deposit into the immediate snapshot object (line 1).
This call is said to occur at recursion level n. More generally, an invocation
rec_update_snapshot(x,−) is said to occur at recursion level x . Hence, the recursion
levels are decreasing from level n to level n − 1, then to level n − 2, etc. (Actually,
a recursion level corresponds to what was called a “level” in Sect. 8.5.3.)

8.5 Immediate Snapshot Objects 245

Fig. 8.16 Recursive construction of a one-shot immediate snapshot object (code for process pi)

When it invokes rec_update_snapshot(x, v), pi first writes v into REG[x][i] and
reads asynchronously the content of REG[x][1..n] (lines 3–4, let us notice that these
lines implement a store-collect). Hence, the array REG[x][1..n] is devoted to the x th
recursion level.

Then, pi computes the view viewi obtained from REG[x][1..n] (line 5). Let us
remark that, as the recursion levels are decreasing and there are at most n participating
processes, the set viewi contains the values deposited by n� = |viewi | processes,
where n� is the number of processes that, from pi ’s point of view, have attained
recursion level x .

If pi sees that exactly x processes have attained the recursion level x (i.e., n� = x),
it returns viewi as the result of its invocation of the immediate snapshot object
(lines 6 and 9). Otherwise, fewer than x processes have attained recursion level x
and consequently pi invokes recursively rec_update_snapshot(x − 1, v) (line 7) in
order to attain a recursion level x � < x accessed by exactly x � processes. It will stop
its recursive invocations when it attains such a recursion level (in the worst case,
x � = 1).

Theorem 38 The algorithm described in Fig. 8.16 is a wait-free construction of an
immediate snapshot object. Its step complexity (number of shared memory accesses)
is O(n(n − |res| + 1)), where res is the set returned by update_snapshot(v).

Proof Claim C. If at most x processes invoke rec_update_snapshot(x,−) then (a)
at most (x − 1) processes invoke rec_update_snapshot(x − 1,−) and (b) at least
one process stops at line 6 of its invocation rec_update_snapshot(x,−).

Proof of claim C. Assuming that at most x processes invoke update_snapshot
(x,−), let pk be the last process that writes into REG[x][1..n]. We necessarily
have |viewk | ≤ x .If pk finds |viewk | = x , it stops at line 6. Otherwise, we have
|viewk | < x and pk invokes rec_update_snapshot(x − 1,−) at line 7. But in that

246 8 Snapshot Objects from Read/Write Registers Only

case, as pk is the last process that wrote into the array REG[x][1..n], it follows
from |viewk | < x that fewer than x processes have written into REG[x][1..n], and
consequently, at most (x − 1) processes invoke rec_update_snapshot(x − 1,−).
End of the proof of claim C.

To prove the termination property, let us consider a correct process pi that
invokes update_snapshot(vi). Hence, it invokes rec_update_snapshot(n,−). It fol-
lows from Claim C and the fact that at most n processes invoke rec_update_snapshot
(n,−) that either pi stops at that invocation or belongs to the set of at most n − 1
processes that invoke rec_update_snapshot(n − 1,−). It then follows by induction
from the claim that if pi has not stopped during a previous invocation, it is the only
process that invokes rec_update_snapshot(1). It then follows from the text of the
algorithm that it stops at that invocation.

The proof of the self-inclusion property is trivial. Before stopping at recursion level
x (line 6), a process pi has written vi into REG[x][i] (line 3), and consequently we
have then (i, vi) ∈ viewi , which concludes the proof of the self-inclusion property.

To prove the self-containment and immediacy properties, let us first consider the
case of two processes that return at the same recursion level x . If a process pi returns
at line 6 of recursion level x , let viewi [x] denote the corresponding value of viewi .
Among the processes that stop at recursion level x , let pi be the last process which
writes into REG[x][1..n]. As pi stops, this means that REG[x][1..n] has exactly x
entries different from ⊥ and (due to Claim C) no more of its entries will be set to
a non-⊥ value. It follows that, as any other process p j that stops at recursion level
x reads x non-⊥ entries from REG[x][1..n], we have viewi [x] = view j [x] which
proves the properties.

Let us now consider the case of two processes pi and p j that return at line 6 of
recursion level x and y, respectively, with x > y; i.e., pi returns viewi [x] while p j

returns view j [y]. The self-containment follows then from x > y and the fact that p j

has written into all the arrays REG[z][1..n] with n ≥ z ≥ y, from which we conclude
that view j [y] ⊆ viewi [x]. Moreover, as x > y, pi has not written into REG[y][1..n]
while p j has written into REG[x][1..n], and consequently (j, v j) ∈ viewi [x] while
(i, vi) /∈ view j [y], from which the containment and immediacy properties follow.

As far as the number of shared memory accesses is concerned we have the follow-
ing. Let res be the set returned by an invocation of rec_update_snapshot(n,−). Each
recursive invocation costs n + 1 shared memory accesses (lines 3–4).
Moreover, the sequence of invocations, namely rec_update_snapshot(n,−), rec
_update_snapshot(n − 1,−), etc., until rec_update_snapshot(|res|, −) (where
x = |res| is the recursion level at which the recursion stops) contains n − |res| +
1 invocations. It follows that the cost is O(n(n − |res| + 1)) shared memory
accesses. �

