244 8 Snapshot Objects from Read/Write Registers Only

For the containment property, let us consider two processes p; and p; that stop at
stairs k;, and k;, respectively. Without loss of generality, let k; < k;. Due to Lemma
20, there are exactly k; processes on the stairs 1 to k;, and k; processes on stairs 1 to
kj < ki. As no process backtracks on the stairway (a process proceeds downwards
or stops), the set of k; processes returned by p; includes the set of k; processes
returned by p;.

Let us finally consider the immediacy property. Let us first observe that a process
deposits its value before starting its descent of the stairway (line 1), from which it
follows that, if j € set;, REG|j] contains the value v; deposited by p ;. Moreover,
it follows from lines 4 and 5 that, if a a process p; stops at a stair k; and then
i € setj, then p; stopped at a stair k; < kj. It then follows from Lemma 20 that the
set set; returned by p; includes the set set; returned by p;, from which follows the
immediacy property. O

8.5.4 A Recursive Implementation
of a One-Shot Immediate Snapshot Object

This section describes a recursive implementation of a one-shot immediate snapshot
object due to E. Gafni and S. Rajsbaum (2010). This construction can be seen as a
recursive formulation of the previous iterative algorithm.

Underlying data structure As we are about to see, when considering distributed
computing, an important point that distinguishes distributed recursion from sequen-
tial recursion on data structures lies in the fact that the recursion parameter is usually
the number n of processes involved in the computation. The recursion parameter is
used by a process to compute a view of the concurrency degree among the partici-
pating processes.

The underlying data structure representing the immediate snapshot object consists
of a shared array REG[1..n] such that each REG[x] is an array of n SWMR atomic
registers. The aim of REG[x], which is initialized to [L, ..., L], is to contain the
view obtained by the processes that see exactly x other processes in the system. For
any x, REG[x] is accessed only by the processes that attain recursion level x and the
atomic register REG[x][i] can be read by all these processes but can be written only
by pi.

The recursive algorithm implementing the operation update_snapshot() The
algorithm is described in Fig. 8.16. Its main call is an invocation of rec_update
_snapshot(n, v;), where n is the initial value of the recursion parameter and v;
the value that p; wants to deposit into the immediate snapshot object (line 1).
This call is said to occur at recursion level n. More generally, an invocation
rec_update_snapshot(x, —) is said to occur at recursion level x. Hence, the recursion
levels are decreasing from level n to level n — 1, then to level n — 2, etc. (Actually,
a recursion level corresponds to what was called a “level” in Sect.8.5.3.)

8.5 Immediate Snapshot Objects 245

operation update_snapshot(v;) is

(1) my_view; < rec_update_snapshot(n, v;)
(2) return(my-view;)

end operation.

operation rec_update_snapshot(x, v) is
% x is the recursion parameter (n > = > 1) %
3) REG[z][i] < v;
(4) foreachj € {1,...,n}doreg;[j] — REG|z][j] end for;
(5) wviewi — { (j,regils]) | regili] # L };
(6) if (Jview;| = x) then res; «— view;
@) else res; < rec_update_snapshot(xz — 1,v)
(8) endif;
(9) return(res;)
end operation.

Fig. 8.16 Recursive construction of a one-shot immediate snapshot object (code for process p;)

When it invokes rec_update_snapshot(x, v), p; first writes v into REG[x][i] and
reads asynchronously the content of REG[x][1..n] (lines 3—4, let us notice that these
lines implement a store-collect). Hence, the array REG[x][1..n] is devoted to the xth
recursion level.

Then, p; computes the view view; obtained from REG[x][1..n] (line 5). Let us
remark that, as the recursion levels are decreasing and there are at most n participating
processes, the set view; contains the values deposited by n’ = |view;| processes,
where n’ is the number of processes that, from p;’s point of view, have attained
recursion level x.

If p; sees that exactly x processes have attained the recursion level x (i.e.,n’ = x),
it returns view; as the result of its invocation of the immediate snapshot object
(lines 6 and 9). Otherwise, fewer than x processes have attained recursion level x
and consequently p; invokes recursively rec_update_snapshot(x — 1, v) (line 7) in
order to attain a recursion level x’ < x accessed by exactly x’ processes. It will stop
its recursive invocations when it attains such a recursion level (in the worst case,
x' =1).

Theorem 38 The algorithm described in Fig. 8.16 is a wait-free construction of an
immediate snapshot object. Its step complexity (number of shared memory accesses)
is O(n(n — |res| + 1)), where res is the set returned by update_snapshot(v).

Proof Claim C. If at most x processes invoke rec_update_snapshot(x, —) then (a)
at most (x — 1) processes invoke rec_update_snapshot(x — 1, —) and (b) at least
one process stops at line 6 of its invocation rec_update_snapshot(x, —).

Proof of claim C. Assuming that at most x processes invoke update_snapshot
(x, —), let px be the last process that writes into REG[x][1..n]. We necessarily
have |viewy| < x.If pi finds |[viewg| = x, it stops at line 6. Otherwise, we have
|lviewg| < x and py invokes rec_update_snapshot(x — 1, —) at line 7. But in that

246 8 Snapshot Objects from Read/Write Registers Only

case, as py is the last process that wrote into the array REG[x][1..n], it follows
from |viewy| < x that fewer than x processes have written into REG[x][1..n], and
consequently, at most (x — 1) processes invoke rec_update_snapshot(x — 1, —).
End of the proof of claim C.

To prove the termination property, let us consider a correct process p; that
invokes update_snapshot(v;). Hence, it invokes rec_update_snapshot(n, —). It fol-
lows from Claim C and the fact that at most n processes invoke rec_update_snapshot
(n, —) that either p; stops at that invocation or belongs to the set of at most n — 1
processes that invoke rec_update_snapshot(n — 1, —). It then follows by induction
from the claim that if p; has not stopped during a previous invocation, it is the only
process that invokes rec_update_snapshot(1). It then follows from the text of the
algorithm that it stops at that invocation.

The proof of the self-inclusion property is trivial. Before stopping at recursion level
x (line 6), a process p; has written v; into REG[x][i] (line 3), and consequently we
have then (i, v;) € view;, which concludes the proof of the self-inclusion property.

To prove the self-containment and immediacy properties, let us first consider the
case of two processes that return at the same recursion level x. If a process p; returns
at line 6 of recursion level x, let view;[x] denote the corresponding value of view;.
Among the processes that stop at recursion level x, let p; be the last process which
writes into REG[x][1..n]. As p; stops, this means that REG[x][1..n] has exactly x
entries different from L and (due to Claim C) no more of its entries will be set to
a non-_L value. It follows that, as any other process p; that stops at recursion level
x reads x non-_L entries from REG[x][1..n], we have view;[x] = view[x] which
proves the properties.

Let us now consider the case of two processes p; and p; that return at line 6 of
recursion level x and y, respectively, with x > y;i.e., p; returns view;[x] while p;
returns view ;[y]. The self-containment follows then from x > y and the fact that p;
has written into all the arrays REG[z][1..n] withn > z > y, from which we conclude
thatview;[y] C view;[x]. Moreover, as x > y, p; has not written into REG[y][1..n]
while p; has written into REG[x][1..n], and consequently (j, v;) € view;[x] while
(i, v;) ¢ view;[y], from which the containment and immediacy properties follow.

As far as the number of shared memory accesses is concerned we have the follow-
ing. Let res be the set returned by an invocation of rec_update_snapshot(n, —). Each
recursive invocation costs n + 1 shared memory accesses (lines 3-4).
Moreover, the sequence of invocations, namely rec_update_snapshot(n, —), rec
_update_snapshot(n — 1, —), etc., until rec_update_snapshot(|res|, —) (where
x = |res| is the recursion level at which the recursion stops) contains n — |res| +
1 invocations. It follows that the cost is O(n(n — |res| + 1)) shared memory
accesses. O

