Practical concurrent algorithms

Aleksandar Dragojevic
Concurrent Algorithms 2011
Distributed Programming Laboratory

Practical

* Course oriented towards theory
* Today: A glimpse of practice
— Use practical operations

— Implement practical data structure
 Linked list

* Give a feeling of “real-world” concurrent
algorithm

Outline

Compare-and-swap
Practical system model
Lock-freedom
Linked-list

Outline

* Compare-and-swap

Compare-and-swap (CAS)

shared val = BOT;

CAS(old, new):
ret = val;
if val == old:
val = new;

return ret;

Why is it important?

 We can implement consensus among any
number of processes

shared CAS cas;

Consensus(val):
res = cas.CAS(BOT, val);
1f res != BOT val = res;

return val;

Why is it important? (cont)

* Consensus allows processes to agree on
something

— Intuitively this is powerful

* CAS allows any number of processes to agree
on something

* More about why this is important in the next
lecture

Why is it important also?

* |tis available in hardware
— On (probably) all architectures

* |tis a staple of concurrent programming
— Linked lists

— Queues
— Etc.

Outline

* Practical system model

Practical system model

e So far: processes operate on shared objects
— Object are linearizable
— Sequential specification

* This lecture: processes operate on memory
locations
— Each location supports multiple instructions
— Sequential specification

Practical system model (cont)

* Processes access memory by issuing atomic
oad, store and CAS instructions

* Processes can perform local computations on
the loaded values

* Processes are equivalent to OS threads

— All processes share the same address space

Practical system model (cont)

Main memory

0x0
Ox4

Ox8

Oxff...f8
Oxff...fc

Practical system model (cont)

Main memory

0x0
> O0x4
0x8

@
Oxff...f8

Oxff...fc

load()

Practical system model (cont)

Main memory

0x0

CAS(vg, v,) Ox4

0x8

Oxff...f8

Oxff...fc

Practical system model (cont)

Main memory

0x0
Ox4
0x8

store(v,)

' Oxff...f8

Oxff...fc

CAS In practice

w t CAS(w t *addr, w t old, w t new) {
w t curr = *addr;
if(curr == old)
*addr = new;

return curr;

From practical model to other model

* |tis straightforward to use practical model as
the model used in the course

— For operations supported by practical model
* Each location is treated as an object

* Only restricted operations are allowed on
each location

— Register: load/store
— CAS: CAS

From practical model to other model
(cont)

class CAS {
w t value = BOT;
w t CAS(w_t old, w_t new) {
return CASInst(&value, old, new);

CAS example

Shared variable initialization
We have a shared variable initialized to BOT

Multiple processes want to initialize it to a
value

— Each process proposes its value (e.g. a problem it
needs solved)

Only one initialization should succeed
— Processes need to agree on the initialized value

CAS example (cont)

w_t *prob = BOT;
process() {
w_ t *prop = init problem(rnd());

w t *res = CAS(&prob, BOT, prop);
if(res != BOT) uninit problem(prop);
work on(prob);

}

Other available operations?

* Depends on the architecture

* Available on x86:
— Test-and-set
— Fetch-and-increment
— Fetch-and-add

Outline

e Linked-list

Linked list

* Alist of nodes that are linked using references

 Dynamic data structure
— Nodes can be allocated and deallocated
— No need to know maximum size upfront

* Base for other data structures
— Queue
— Hash table
— Skip list

Linked list API

struct Node {

int key;

int val;

Node #*next;
i
bool Insert(Node *node);
Node *Remove(int key);
Node *Lookup(int key);

BOT

Linked list

10

20

30

BOT

Linked list

10

Insert()

15

20

30

BOT

Linked list

Insert()

108 % 20
15

30

BOT

Linked list

108 % 20
15

30

BOT

Linked list

108 % 20
15

Remove(20)

30

BOT

Linked list

30

[

Remove(20)

Our goal today

* Implement the linked list in our model using
load, store and CAS instructions

Progress

 We are not going to implement a wait-free
linked list

— We assumed wait-free implementations so far in
the course

 We will implement a lock-free linked list

— High performance

* Wait-free linked list is a hard problem

— |In next lectures

Outline

 Lock-freedom

Lock-freedom

* |f a process performs steps of an algorithm for
sufficiently long time, some process will make

progress
e What is difference to wait-freedom?

Difference to wait-freedom

* With wait-free algorithms, when a process
makes steps it is guaranteed to make progress

* With lock-free algorithms, some process is
guaranteed to make progress

— But not necessarily the process performing the
steps

Intuition for lock-freedom

* Lock-freedom guarantees overall progress

— No guarantee of overall progress is weaker than
lock-freedom (more on this in next lectures)

 Eliminates live-lock

* |tis usually fine in practice

— In practice the “winner” is likely to go do
something else and permit the “looser” to
perform the operation later

Which is better?

 Wait-freedom is a stronger property
— It is harder to achieve in efficient way
— General wait-free algorithms in next lectures

* Lock-freedom is easier to achieve in practice
efficiently

— It is more often used for that reason

* |f we had equally efficient algorithms A
and A, f.., W& would choose A

lock-free

wait-free

Lock-free and Linearizable

* Having lock-free algorithms doesn’t change
the requirement for linearizable algorithms

* |f the operation succeeds, there has to be a
Inearization point

* Lock-freedom just means that the operation
will not necessarily succeed

Lock-free strong counter

w t count = 0;
w t increment() {
while(true) {
w t val = count; // implied load
1f (CAS(&count, val, val + 1) == val)
return val;

Lock-free strong counter (cont)

Simple algorithm

Starvation is possible

— A process could be prevented from returning a
value by another process that always succeeds

Live-lock is not possible

— A process is prevented from returning by a
successful process

In practice, starvation is not probable

Lock-free strong counter (cont)

count

0

Lock-free strong counter (cont)

count

Lock-free strong counter (cont)

count

0

P, inc()

|
load<-0

Lock-free strong counter (cont)

count

1

P, inc()
| . :

I
load$-0 cas<ok

Lock-free strong counter (cont)

count

1

P, inc() inc()

i *— i
load$-0 cas<ok

Lock-free strong counter (cont)

count

1

P, inc() inc()

i *— i
load$-0 cas<ok

P, inc()

Lock-free strong counter (cont)

count
1
P, inc() inc()
|]
load<-0 cas<ok load<-1

P, inc()
|

Lock-free strong counter (cont)

count
1
P, inc() inc()
| *——
load<-0 cas<ok load<-1
P, inc()

]
load<-1

Lock-free strong counter (cont)

count
2
P, inc() inc()
| o >
load<-0 cas<ok load<1 cas<-ok
P, inc()

]
load<-1

Lock-free strong counter (cont)

count
2
P, inc() inc()
| o >
load<-0 cas<ok load<1 cas<-ok
P, inc()

]
load<1 cas<fail

Lock-free strong counter (cont)

count
2
P, inc() inc() inc()
I *—i i *—
load<-0 cas<ok load<1 cas<-ok
P, inc()

]
load<1 cas<fail

Lock-free strong counter (cont)

count
2
P, inc() inc() inc()
| o o
load€-0 cas<ok load<1 cas<-ok load &2
P, inc()

]
load<1 cas<fail

Lock-free strong counter (cont)

count
2
P, inc() inc() inc()
| o o
load€-0 cas<ok load<1 cas<-ok load &2
P, inc()

]
load<1 cas<fail load<-2

Lock-free strong counter (cont)

count
3
P, inc() inc() inc()
| o o o~—+—
load<-0 cas<ok load<1 cas<-ok load€-2 cas<ok
P, inc()
| ->

]
load<1 cas<fail load<-2

Lock-free strong counter (cont)

count
3
P, inc() inc() inc()
I *—] i *—1 o—
load<-0 cas<ok load<1 cas<-ok load€-2 cas<ok
P, inc()

]
load<1 cas<fail load<2 cas<&fail

Lock-free strong counter (cont)

count
3
P, inc() inc() inc()
| o o o~—+—
load<-0 cas<ok load<1 cas<-ok load€-2 cas<ok
P, inc()
| ->

]
load<1 cas<fail load<2 cas<&fail

CAS can continue to fail

Wait-free counter?

* General technique exists
— More complex and less efficient
— Next lecture

* |ntuition
— Processes have to help each other

— A process that succeeds the CAS needs to help the
other processes to finish their operations

Outline

e Linked-list

Our goal today

* Implement the lock-free linked list in our
model using load, store and CAS instructions

Lock-freedom

* |f a process performs steps of an algorithm for
sufficiently long, some process will make
progress

Linked list API

struct Node {

int key;

int val;

Node #*next;
i
bool Insert(Node *node);
Node *Remove(int key);
Node *Lookup(int key);

What should we do?

BOT

20

30

Overview

* Fields key and val are not changed after the
element has been inserted into the list

* We only need to change next field
concurrently

— During insert and remove
— We need to “swing” it from one node to another

* Keep the list sorted

BOT

Lookup (version 1)

> 10

20

30

BOT

Lookup (version 1)

> 10

Lookup(20)

20

30

BOT

Lookup (version 1)

> 10

Lookup(20)

20

30

BOT

Lookup (version 1)

> 10

Lookup(20)

20

30

BOT

Lookup (version 1)

—> 10

Lookup(20)

20

30

BOT

Lookup (version 1)

> 10

Lookup(20)

20

30

BOT

Lookup (version 1)

> 10

Lookup(20)

20

30

BOT

Lookup (version 1)

> 10

Lookup(20)

20

30

BOT

Lookup (version 1)

> 10

Lookup(20)

20

30

BOT

Lookup (version 1)

> 10

Lookup(20)

20

30

Insert

First lookup an element

If the node with the same key exists, return
false

If not, we found the position for element
Insertion

Locally prepare node’s next field

Use CAS to make sure previous node hasn’t
changed and to update it to the new node

BOT

Insert (version 1)

> 10

20

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

|_)

Insert(25)

25

20

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

20

Insert(25)

25

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

20

Insert(25)

25

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

Insert(25)

25

20

30

BOT

Insert (version 1)

10

Insert(25)

20

30

25

BOT

Insert (version 1)

10

Insert(25)

20

30
Locally!
25

What if another node was inserted?

BOT

Insert (version 1)

10

22

Insert(25)

20

30

25

Locally!

Insert (version 1)

What if another node was inserted?

Use CAS to check the previous node is
the same and to update it.

22

BOT| > 10 | >

20

Insert(25)

30

25

Locally!

Insert (version 1)

If CAS fails, redo the search.
If it succeeds, the node was inserted.

22

BOT| > 10 | >

20

Insert(25)

30

25

Locally!

BOT

Insert (version 1)

10

Insert(25)

%”
20

30

25

Locally!

BOT

Insert (version 1)

10

Insert(25)

20

30
Locally!
25

BOT

Insert (version 1)

10

CAS

Insert(25)

20

30
Locally!
25

BOT

Insert (version 1)

10

CAS

Insert(25)

20 30
8 % Locally!
25

Remove

First lookup an element
If node with the key doesn’t exist, return false

If it does, we found the node to remove and
the previous node

Use CAS to make sure previous node hasn’t
changed and to remove the found node

BOT

Remove (version 1)

> 10

20

30

Remove (version 1)

BOT| > 10 | > 20 | >

Remove(20)

Remove (version 1)

BOT| >

Remove(20)

10

—>

20

—

30

Lookup finds node

Remove (version 1)

BOT| > 10 | > 20 | >

Remove(20)

Remove (version 1)

As before, use CAS to unlink
the node from list

BOT| > 10 | > 20 | >

Remove(20)

Remove (version 1)

As before, use CAS to unlink

the node from list
CAS

BOT| > 10 | > 20 | >

Remove(20)

Remove (version 1)

As before, use CAS to unlink

the node from list
CAS

BOT| > 10 20 | M2

~

Remove(20)

Remove (version 1)

BOT| >

Remove(20)

10

20

30

Remove (version 1)

What if another node was inserted
in the meantime after node 207

Remove(20)

BOT| >

10

25

20

30

—

Remove (version 1)

What if another node was inserted
in the meantime after node 207

Then we accidentally removed that node too!

Remove(20)

BOT| >

10

25

20

30

—

s Remove (version 1) correct then?

s Remove (version 1) correct then?

* |tis not linerizable (lost operation)
e Which means that it is not correct
e What should we do about it?

Why is there a problem?

Why is there a problem?

We update the previous node’s next field and
make it point to what we saw was the next
field of the removed node

But that doesn’t mean this is still the next field
of the removed node

CAS doesn’t ensure the next field of the
removed node is unchanged

It ensures the next field of the previous node
is unchanged (this is also necessary)

Why is there a problem? (cont)

 We need to ensure two locations remain the
same while we update one of them

* CAS operates on a single location

 We need double-compare-single-swap
operation to (simply) solve this problem

— This is not available in hardware

How to solve the problem?

* Mark the removed nodes using a spare bit

from the next field
— There is a spare bit if we assume word-aligned
data structures

 Marking of the node is the linearization point
of the operation
e After the node is marked, try to unlink it too

* Other operations can help with the unlinking

BOT

Remove (version 2)

> 10

20

30

Remove (version 2)

BOT| > 10 | > 20 | >

Remove(20)

Remove (version 2)

BOT| >

Remove(20)

10

—>

20

—

30

Lookup finds node

Remove (version 2)

First mark the node’s next pointer

BOT| > 10 | > 20 | >

Lookup finds node

Remove(20)

Remove (version 2)

First mark the node’s next pointer

BOT| >

Remove(20)

10

CAS

20

30

Remove (version 2)

BOT| > 10 | > 20 |,—>

Remove(20)

Remove (version 2)

Then, try to unlink the node
CAS

BOT| > 10 | > 20 |,—>

Remove(20)

Remove (version 2)

BOT| >

Remove(20)

10

20 |,

30

Remove (version 2)

What if unlink fails?

BOT| >

Remove(20)

10

20 |,

30

Remove (version 2)

What if unlink fails?
That is ok if lookup ignores marked nodes

BOT| > 10 20 |,

T

Remove(20)

Lookup (version 2)

e Similar to version 1
e Search ignores marked nodes
* [t tries to unlink marked nodes

Insert (version 2)

Similar to version 1

Search ignores marked nodes
It tries to unlink marked nodes
The rest is the same

— No need to change the insert of the node

— CAS fails if the node became marked since it’s
been read

Pseudo code

Node *search(int k, Node **left) {
Node *left next, *right;
search again:

do {

Node *t = head; Node *t_next = head.next;
/* 1: Find left node and right node */

do {
if(!is_marked(t_next)) {
(*left) = t;
left next = t_next;
}
t = unmark(t_next);
if(t == NULL) break;
t _next = t.next;
} while (is_marked(t_next) || (t.key<k));
right = t;
/* 2: Check nodes are adjacent */
if(left next == right)
if((right != NULL) && is_marked(right.next)) goto search again;

else return right node;

/* 3: Remove one or more marked nodes */

if(CAS(&(left.next), left next, right))
if((right != NULL) && is_marked(right.next)) goto search again;
else return right node;

} while (true);

Pseudo code (cont)

Node *Lookup(int key) {
Node *right, *left;
right = search(key, &left);

if(right == NULL || right.key != key)
return NULL;
else

return right;

Pseudo code (cont)

bool Insert(Node *node) {
Node *right, *left;

do {
right = search(node.key, &left);
if((right != NULL) && (right.key == key))

return false;
node.next = right;
if(CAS(&(left.next), right, node))
return true;

} while (true);

Pseudo code (cont)

Node *Remove(int key) {
Node *right, *right next, *left;
do {
right = search(key, &left);
if((right == NULL) || (right.key != key))
return NULL;
right next = right.next;
if(!is marked(right next))
if (CAS(&(right.next), right next, mark(right next)))
break;
} while(true);
if(!CAS(&(left.next), right, right next))
right = search(right.key, &left);
return right;

Important assumption

* Removed nodes are not reused until all
operations that are in progress are finished
* How to ensure this?
— Garbage collector

— Concurrent memory managers

References

* T. Harris “A Pragmatic Implementation of Non-
Blocking Linked-Lists.” DISC 2001.

« M. M. Michael “Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects.” |IEEE
Transactions on Parallel and Distributed Systemes,
June 2004.

* M. Herlihy, V. Luchangco, P. Martin, and M. Moir.
“Non- blocking memory management support for

dynamic-sized data structures.” ACM
Transactions on Computer Systems, May 2005.

