
Concurrent Algorithms 2013
Programming Assignment

Linked Lists:
Locking vs. Lock-Free

Linked list

• Data structure with group of nodes
- representing a sequence

• Operations
- add()
- remove()
- contains()

2

a c d

Task

• Implement 2 versions of a linked list
 - lock-based
 - lock-free

• The algorithms are given
 - design is tough
 - implementation can also be tricky

3

Deliverables

• An archive with your code
• A short report

• Deadline (strict)
- Monday, December 16th, 23:59

4

Skeleton Code in C

• Benchmarking code: do NOT change it
• Scripts

- test correctness
- execute experiments
- print graphs

• See README (or ca_prog_assignment.pdf)
• If C is a problem, contact the TAs

5

Programmer’s Toolbox

•  Registers:
–  Shared memory locations

•  Atomic Operations:
–  Fetch-and-Add
–  Test-and-Set
–  Compare-and-Swap
–  Provided in atomic_ops.h

•  Use them to build concurrent objects
6

Atomic Operations in
Practice

•  Example: CAS based lock:

void lock(lock_t* lock) {

 while (CAS(lock,0,1)==1) {}

}

void unlock(lock_t* lock) {

 *lock = 0;

}
7

Linked Lists:
Locking vs. Lock-Free

Original slides
by Maurice Herlihy & Nir Shavit

Outline

•  Lock-free linked list
•  Lock-based linked list

9

10

Linked List

•  Using a list-based Set
–  Common application
–  Building block for other apps

11

Set Interface

•  Unordered collection of items
•  No duplicates
•  Methods

– add(x) put x in set
– remove(x) take x out of set
– contains(x) tests if x in set

12

List Node
public class Node {
 public T item;
 public int key;
 public Node next;
}

13

The List-Based Set

a b c

Sorted with Sentinel nodes
(min & max possible keys)

-∞

+∞

14

Reminder: Lock-Free Data
Structures

•  No matter what …
–  Some thread will complete method call
–  Even if others halt at malicious times
– Weaker than wait-free, yet

•  Implies that
–  You can’t use locks (why?)
–  Um, that’s why they call it lock-free

15

Why lock-free?

•  Any concurrent data structure based
on mutual exclusion has a weakness

•  If one thread
–  Enters critical section
–  And “eats the big muffin”

•  Cache miss, page fault, descheduled …
•  Software error, …

–  Everyone else using that lock is stuck!

16

Lock-free Lists

•  Eliminate locking entirely
•  contains() wait-free and add() and

remove() lock-free
•  Use only compareAndSwap()

17

Bad news

Problem

a b c d

remov
e b

remov
e c

18

Problem

•  Method updates node’s next field
•  After node has been removed

19

Solution

• Use 1 bit to signify removal
• Atomically

- Swing reference and
- Update flag

• Remove in two steps
- Set mark bit in next field
- Redirect predecessor’s pointer

20

Logical vs. Physical Deletion

•  Logical delete
– Marks current node as removed

•  Physical delete
–  Redirects predecessor’s next

21

Removing a Node

a b c d

remov
e c

CAS

22

Removing a Node

a b d

remov
e b

remov
e c

c CAS CAS

failed

23

Removing a Node

a b d

remov
e b

remov
e c

c

24

Removing a Node

a d

remov
e b

remov
e c

25

Traversing the List

•  Q: what do you do when you find a
“logically” deleted node in your path?

•  A: finish the job.
–  CAS the predecessor’s next field
–  Proceed (repeat as needed)

26

Lock-Free Traversal

a b c d
CAS

Uh-oh

27

Summary: Lock-free Removal

a 0 0 0 a b c 0 e 1 c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS pointer

Use CAS to verify pointer
is correct

Not enough!

28

Lock-free Removal

a 0 0 0 a b c 0 e 1 c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0 d Problem:
d not added to list…
Must Prevent
manipulation of
removed node’s pointer

Node added
Before
Physical
Removal CAS

29

Our Solution: Combine Bit and
Pointer

a 0 0 0 a b c 0 e 1 c

Logical Removal =
Set Mark Bit

Physical
Removal
CAS

0 d

Mark-Bit and Pointer
are CASed together

Fail CAS: Node not
added after logical
Removal

30

A Lock-free Algorithm

a 0 0 0 a b c 0 e 1 c

1. add() and remove() physically remove marked
nodes

2. Wait-free find() traverses both marked and
removed nodes

Outline

•  Lock-free linked list
•  Lock-based linked list

31

Locks

•  Used to ensure mutual exclusion in
critical sections

•  2 methods:
–  acquire()
–  release()

•  Many algorithms to implement locks

32

What about lock-based
algorithms?

•  Generally easier to design
•  In many cases simpler code
•  May be faster?

•  However
–  Deadlocks etc.

33

34

Coarse Grained Locking

a b d

35

Coarse Grained Locking

a b d

c

36

honk!

Coarse Grained Locking

a b d

c

Simple but hotspot + bottleneck

honk!

37

Coarse-Grained Locking

•  Easy, same as synchronized methods
•  Simple, clearly correct

–  Deserves respect!
•  Works poorly with contention

– Queue locks help
–  But bottleneck still an issue

38

Fine-grained Locking

•  Requires careful thought
•  Split object into pieces

–  Each piece has own lock
– Methods that work on disjoint pieces

need not exclude each other

39

Hand-over-Hand locking

a b c

40

Hand-over-Hand locking

a b c

41

Hand-over-Hand locking

a b c

42

Hand-over-Hand locking

a b c

43

Hand-over-Hand locking

a b c

44

Removing a Node

a b c d

remove(b)

45

Removing a Node

a b c d

remove(b)

46

Removing a Node

a b c d

remove(b)

47

Removing a Node

a b c d

remove(b)

48

Removing a Node

a c d

remove(b)

49

Removing a Node

a b c d

remove(c)
remove(b)

50

Removing a Node

a b c d

remove(b)
remove(c)

51

Removing a Node

a b c d

remove(b)
remove(c)

52

Removing a Node

a b c d

remove(b)
remove(c)

53

Removing a Node

a b c d

remove(b)
remove(c)

54

Removing a Node

a b c d

remove(b)
remove(c)

55

Removing a Node

a b c d

remove(b)
remove(c)

56

Removing a Node

a b c d

remove(b)
remove(c)

57

Uh, Oh

a c d

remove(b)
remove(c)

58

Uh, Oh

a c d

Bad news

remove(b)
remove(c)

59

Problem

•  To delete node b
–  Swing node a’s next field to c

•  Problem is,
–  Someone could delete c concurrently

b a c

b a c

60

Insight

•  If a node is locked
– No one can delete node’s successor

•  If a thread locks
– Node to be deleted
–  And its predecessor
–  Then it works

61

Hand-Over-Hand Again

a b c d

remove(b)

62

Hand-Over-Hand Again

a b c d

remove(b)

63

Hand-Over-Hand Again

a b c d

remove(b)

64

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

65

Hand-Over-Hand Again

a b c d

remove(b)
Found

it!

66

Hand-Over-Hand Again

a c d

remove(b)

67

Removing a Node

a b c d

remove(b)
remove(c)

68

Removing a Node

a b c d

remove(b)
remove(c)

69

Removing a Node

a b c d

remove(b)
remove(c)

70

Removing a Node

a b c d

remove(b)
remove(c)

71

Removing a Node

a b c d

remove(b)
remove(c)

72

Removing a Node

a b c d

remove(b)
remove(c)

73

Removing a Node

a b c d

remove(b)
remove(c)

74

Removing a Node

a b c d

remove(b)
remove(c)

75

Removing a Node

a b c d

remove(b)
remove(c)

76

Removing a Node

a b c d

remove(b)
remove(c)

77

Removing a Node

a b d

remove(b)

78

Removing a Node

a b d

remove(b)

79

Removing a Node

a b d

remove(b)

80

Removing a Node

a d

remove(b)
remove(c)

81

Removing a Node

a d

82

Adding Nodes

•  To add node e
– Must lock predecessor
– Must lock successor

•  Neither can be deleted
–  (Is successor lock actually required?)

83

Drawbacks

•  Better than coarse-grained lock
–  Threads can traverse in parallel

•  Still not ideal
–  Long chain of acquire/release
–  Inefficient

84

“To Lock or Not to Lock”

•  Locking vs. Non-blocking: Extremist views
on both sides

•  Programming assignment:
–  Locking & non-blocking linked list

implementations.

Grading (bonus)

•  Lock-based: 0.5 points
•  Lock-free: 0.5 points
•  Fastest implementation

–  Lock-based: 0.5 points
–  Lock-free: 0.5 points
–  A student can get only one bonus bonus

•  If needed: 2nd fastest (lock-based) will get it

85

Recap

•  Implement 2 linked list algorithms
–  A lock-based
–  A lock-free

•  Deadline (strict):
Monday, December 16th, 23:59

86

