Exercice 1:

Given the fact: \#: "if processor i fails, then, instantly, all processors $j \neq i$ fail", which of the following assertions are true:
a: if a processor $j \neq i$ fails, then processor i has failed
b: if a processor $j \neq i$ fails, i may have failed or not
c: if a processor $\mathrm{j} \neq \mathrm{i}$ fails, then processor i has not failed.
d: if no processor $j \neq i$ fails, i may have failed or not
e: if no processor $j \neq i$ fails, then processor i has failed.
f: if no processor $j \neq i$ fails, then processor i has not failed.
g : if all processors $j \neq i$ fail, then processor i has failed
h : if all processors $j \neq i$ fail, i may have failed or not
i : if all processors $\mathrm{j} \neq \mathrm{i}$ fail, then processor i has not failed.
j : if some processor $j \neq i$ does not fail, i may have failed or not
k : if some processor $j \neq i$ does not fail, then processor i has failed.
I: if some processor $j \neq i$ does not fail, then processor i has not failed.
which of the previous assertions imply \#

Exercice 2:

replace "instantly" with "eventually" in exercice 1.

Exercice 3:

Prove by induction that for every integer n, the number of edges in a complete graph of n vertices is $n(n-1) / 2$
(the goal is to write down the prove by induction and refresh proof-writing, not to find the result with an easier method)

