Midterm Exam 06:
Exercise 2
Atomic Shared Memory

Atomic register

 Every failed (write) operation appears to be either
complete or not to have been invoked at all

And

 Every complete operation appears to be executed at
some instant between its invocation and reply time
events

e In other words, atomic register is:
e Regular (READ returns the latest value written, or one of the
values written concurrently), and

e READ rd’ that follows some (complete) read rd does not
return an older value (than rd)

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

Non-Atomic Execution 1

R()->5 R()-=>0 R() => 25
Pl | B | | | |

W(5) W(6)

Non-Atomic Execution 2

RO>5 R(O)>6 R(O)->5
Pl | B | — |

W(5) W(6)

Non-Atomic Execution 3

Pl

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

R()->6 R()->5

crash
W(6)

%
=

Atomic Execution 1

RO>5 R(O)->5 R(O->5
Pl | B | — |

W(5) W(6)

Atomic Execution 2

RO>5 R(O)>6 R(O)->6
Pl | B | — |

W(5) W(6)

Atomic Execution 3

Pl | |

— Wl e S ¥
Midterm Exam: Exercise 2 — Atomic shared memory

Atomic Execution 4

RO)->5 R()->6
P1 | | |

crash
b
/\

— Wl e S ¥
Midterm Exam: Exercise 2 — Atomic shared memory

W(5)
Py ()

Best case complexity

 We build algorithms for the worst case (or unlucky)
situations

e Asynchrony
e Concurrency
e Many failures
e However, very frequently situation is not that bad
(lucky executions)
e Synchrony
* No concurrency
e Few failures (or none at all)

e Practical algorithms should take advantage of the
lucky executions

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

Exercise 2

e Give a 1-writer n-reader atomic register
implementation (n=5, majority of processes is
correct) in which

e L[.2: all read/write operations™ complete in at most 2 round-
trips
* In every round-trip, a client (writer or reader) sends a message to all
processes and awaits response from some subset of processes
e L1: all lucky read/write operations™ should complete in a
single round-trip
* A read/write operation op 1is lucky if:

e The system is synchronous: messages among correct processes
delivered within the time A (known to all correct processes)

* op is not concurrent with any write operation
e At most one process is faulty

*invoked by a correct client

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

The majority algorithm [ABD95]

* All reads and writes complete in a single
round-trip

e A client sends a message to all processes and waits
for response from a majority

e However, this algorithm implements only
regular register (not atomic)
 To make the algorithm atomic:

e readers impose a value with a highest timestamp to
a majority of processes

(requires a second round-trip)

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

Lucky operations

e If the operation is lucky, the client will be
able to receive (at least) 4 (out of 5) responses

t‘ t"E'A +2A
h e
\\ T
X
timer=2A

— (It
Midterm Exam: Exercise 2 — Atomic shared memory

Solution

e In the following slides we modify the
majority algorithm of [ABD9S5]

e [ABD95] is given in slides 30-32, Regular Register
Algorithms lecture notes — in Shared Memory part 2

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

Algorithm - Write()

e Write(v) at p1 (the writer) e Atpi
e tsl++ e when receive [W tsl, v] from pl
e trigger(timer=2A) e Iftsl > sni then
e send [W.tsl,v] to all * Vii=V
e when receive [W.,ts1,ack] from e sni:=tsl
majority o

send [W ts1 ,ack] to pl

Wait for expiration of timer

If received 4 acks then

e when receive [W2,ts1, v] from pl
e Return ok

o [ftsl > sni2 then

° Vi2:=V

e else
e Send [W2.,tsl,v] to all

e when receive [W2 ts1,ack]
from majority

e sni2 :=tsl

send [W2.ts1,ack] to pl

e Return ok

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

How the (/ucky) write works

vi,sni v2i,sn2i
vild| v0,0

vi,sni v2i,sn2i

vi,sni v2i,sn2i
vl,0 | v0,0

v0 30 v0 ,0

vi,sni v2i,sn2i

V’ﬁy,q v0 ,0

(writer)

write(v) v 1] v0,0

tsl++ %tsl=1 \
trigger(timer=2A) @

send [W. ts1,v] to all

— (It
Midterm Exam: Exercise 2 — Atomic shared memory

e s La

How the (unlucky) write works

vi,sni v2i,sn2i

vl | v 8
vi,sni v2i,sn2i
vi,sni v2i,sn2i @ v0,0| v0,0
vl 0 | xA.0
,’ vi,sni v2i,sn2i
@ \ ,’q va,d
(writer) @
write(v) v0,0|v0,0

send[W2,ts1,97 torall

waitfegenajority-of Acks
send [W. ts1,v] to all

— (It
Midterm Exam: Exercise 2 — Atomic shared memory

e s La) —

Algorithm - Read()

e Read() at pi e Atpi
o rSi++ e when receive [R,rsj] from pj
e trigger(timer=2A) * send [R,rsj,sni,vi] to pj

e send [R,rs1] to all

* when receive [R,rsi,snj,vj]
from majority

e v :=vj with the largest snj

e Returnv

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

Algorithm -

Read()

e Read() at pi

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

rsi++
trigger(timer=2A)
send [R rsi] to all

when receive [R,rsi,snj,v]),sn2j,v2j]
from majority

Wait for expiration of timer

v := vj with the largest snj

e Returnv

At pi

e when receive [R,rsj] from pj
e send [R,rsj,sni,vi,sn2i,v2i] to pj

Algorithm - Read()

e Read() at pi e Atpi
o ISit++ e when receive [R.rsj] from pj
e trigger(timer=2A) e send [Rrsj,sni,vi,sn2i,v2i] to pj

e send [R,rsi] to all
e when receive [R,rsi,snj,vj,sn2j,v2j]
from majority
e Wait for expiration of timer
e v :=vjor v2j with the largest snj or sn2j
e If vis some v2j or there are 3 responses
where vj=v and snj=snMAX then
e Return v
* else
e Send [W.tsl,v] to all
e when receive [W tsl,ack] from majority
* Return ok

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

How the /ucky read works
Following the lucky write

pS knows that a value with the
largest timestamp has already
been imposed to a majority
(in our case p2.,p3 and p4)

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

How the /ucky read works

Following the unlucky (2 round-trip) write

p2

e

pS saw a (at least one) « green » value
with the largest timestamp: hence,
p4 this value has already been
imposed to a majority in the 1st
round-trip of the write

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

Unlucky read

e Must impose a value with the largest timestamp to

a majority of processes

e If v is some v2j or there are 3 responses where vj=v and snj=snMAX
then

e Returnv

e else
e Send [W. tsl,v] to all
* when receive [W tsl,ack] from majority
e Return ok

* W not W2!

e Readers impose a value on « yellow » not « green »
variables

e Only the writer writes into the « green » variables (v21,sn21)

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

An offline exercise

 Try to rigorously prove correctness of this
algorithm

 Proving correctness may appear on the final
exam

— {lll e
Midterm Exam: Exercise 2 — Atomic shared memory

