
Midterm Exam 06:
Exercise 2

Atomic Shared Memory

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 2	

Atomic register
•  Every failed (write) operation appears to be either

complete or not to have been invoked at all	

And	

•  Every complete operation appears to be executed at
some instant between its invocation and reply time
events 	

•  In other words, atomic register is:	

•  Regular (READ returns the latest value written, or one of the

values written concurrently), and	

•  READ rd’ that follows some (complete) read rd does not

return an older value (than rd)	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 3	

Non-Atomic Execution 1

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 0 R3() -> 25

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 4	

Non-Atomic Execution 2

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 6 R3() -> 5

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 5	

Non-Atomic Execution 3

P2

P1

W(5)

R() -> 6

P2

P1

W(5)

R() -> 5

W(6)
crash

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 6	

Atomic Execution 1

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 5 R3() -> 5

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 7	

Atomic Execution 2

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 6 R3() -> 6

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 8	

P2

P1

W(5)

R() -> 5

W(6)
crash

Atomic Execution 3

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 9	

P2

P1

W(5)

R() -> 5

P2

P1

W(5)

R() -> 6

W(6)
crash

Atomic Execution 4

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 10	

Best case complexity
•  We build algorithms for the worst case (or unlucky)

situations	

•  Asynchrony	

•  Concurrency	

•  Many failures	

•  However, very frequently situation is not that bad
(lucky executions)	

•  Synchrony	

•  No concurrency	

•  Few failures (or none at all)	

•  Practical algorithms should take advantage of the
lucky executions	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 11	

Exercise 2
•  Give a 1-writer n-reader atomic register

implementation (n=5, majority of processes is
correct) in which	

•  L2: all read/write operations* complete in at most 2 round-

trips	

•  In every round-trip, a client (writer or reader) sends a message to all

processes and awaits response from some subset of processes	

•  L1: all lucky read/write operations* should complete in a

single round-trip	

•  A read/write operation op is lucky if:	

•  The system is synchronous: messages among correct processes
delivered within the time Δ (known to all correct processes)	

•  op is not concurrent with any write operation	

•  At most one process is faulty	

*invoked by a correct client	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 12	

The majority algorithm [ABD95]

•  All reads and writes complete in a single
round-trip	

•  A client sends a message to all processes and waits

for response from a majority	

•  However, this algorithm implements only

regular register (not atomic)	

•  To make the algorithm atomic: 	

•  readers impose a value with a highest timestamp to
a majority of processes 	

	
(requires a second round-trip)	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 13	

Lucky operations

•  If the operation is lucky, the client will be
able to receive (at least) 4 (out of 5) responses 	

timer=2Δ	

t	
 t+2Δ	
t+Δ	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 14	

Solution

•  In the following slides we modify the
majority algorithm of [ABD95]	

•  [ABD95] is given in slides 30-32, Regular Register

Algorithms lecture notes – in Shared Memory part 2	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 15	

Algorithm - Write()
•  Write(v) at p1 (the writer)	

•  ts1++	

•  trigger(timer=2Δ)	

•  send [W,ts1,v] to all	

•  when receive [W,ts1,ack] from

majority 	

•  Wait for expiration of timer	

•  If received 4 acks then	

•  Return ok	

•  else	

•  Send [W2,ts1,v] to all	

•  when receive [W2,ts1,ack]

from majority 	

•  Return ok	

•  At pi	

•  when receive [W,ts1, v] from p1	

•  If ts1 > sni then	

•  vi := v	

•  sni := ts1	

•  send [W,ts1,ack] to p1	

•  when receive [W2,ts1, v] from p1	

•  If ts1 > sni2 then	

•  vi2:= v	

•  sni2 := ts1	

•  send [W2,ts1,ack] to p1	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 16	

How the (lucky) write works

p1 	

(writer)	

p2	

p3	

p4	

p5	

write(v)	

	
ts1++ %ts1=1	

	
trigger(timer=2Δ)	

	
send [W,ts1,v] to all	

vi,sni	
v2i,sn2i	

vi,sni	
 v2i,sn2i	

vi,sni	
 v2i,sn2i	

vi,sni	
 v2i,sn2i	

v0,0	
 v0,0	

v0,0	
 v0,0	

v0,0	
 v0,0	

v0,0	
 v0,0	

v0,0	
 v0,0	

v1,1	

v1,1	

v1,1	

v1,1	

ACK	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 17	

How the (unlucky) write works

p1 	

(writer)	

p2	

p3	

p4	

p5	

write(v)	

	
ts1++ %ts1=1	

	
trigger(timer=2Δ)	

	
send [W,ts1,v] to all	

vi,sni	
v2i,sn2i	

vi,sni	
 v2i,sn2i	

vi,sni	
 v2i,sn2i	

vi,sni	
 v2i,sn2i	

v0,0	
 v0,0	

v0,0	
 v0,0	

v0,0	
 v0,0	

v0,0	

v0,0	
 v0,0	

v1,1	

v1,1	

v1,1	

ACK	

v0,0	

send[W2,ts1,v] to all	

wait for majority of acks	

v1,1	

v1,1	

v1,1	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 18	

Algorithm - Read()
•  Read() at pi	

•  rsi++	

•  trigger(timer=2Δ)	

•  send [R,rsi] to all	

•  when receive [R,rsi,snj,vj]

from majority 	

•  v := vj with the largest snj 	

•  Return v	

•  At pi	

•  when receive [R,rsj] from pj	

•  send [R,rsj,sni,vi] to pj	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 19	

Algorithm - Read()
•  Read() at pi	

•  rsi++	

•  trigger(timer=2Δ)	

•  send [R,rsi] to all	

•  when receive [R,rsi,snj,vj,sn2j,v2j]

from majority 	

•  Wait for expiration of timer	

•  v := vj with the largest snj 	

•  Return v	

•  At pi	

•  when receive [R,rsj] from pj	

•  send [R,rsj,sni,vi,sn2i,v2i] to pj	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 20	

Algorithm - Read()
•  Read() at pi	

•  rsi++	

•  trigger(timer=2Δ)	

•  send [R,rsi] to all	

•  when receive [R,rsi,snj,vj,sn2j,v2j]

from majority 	

•  Wait for expiration of timer	

•  v := vj or v2j with the largest snj or sn2j	

•  If v is some v2j or there are 3 responses

where vj=v and snj=snMAX then	

•  Return v	

•  else 	

•  Send [W,ts1,v] to all	

•  when receive [W,ts1,ack] from majority 	

•  Return ok	

•  At pi	

•  when receive [R,rsj] from pj	

•  send [R,rsj,sni,vi,sn2i,v2i] to pj	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 21	

How the lucky read works

p2	

p3	

p4	

p5	

p1	

Following the lucky write	

p5 knows that a value with the
largest timestamp has already
been imposed to a majority
(in our case p2,p3 and p4)	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 22	

How the lucky read works

p2	

p3	

p4	

p5	

p1	

Following the unlucky (2 round-trip) write	

p5 saw a (at least one) « green » value
with the largest timestamp: hence,
this value has already been
imposed to a majority in the 1st
round-trip of the write	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 23	

Unlucky read
•  Must impose a value with the largest timestamp to

a majority of processes	

•  If v is some v2j or there are 3 responses where vj=v and snj=snMAX

then	

•  Return v	

•  else 	

•  Send [W,ts1,v] to all	

•  when receive [W,ts1,ack] from majority 	

•  Return ok	

•  W not W2! 	

•  Readers impose a value on « yellow » not « green »

variables	

•  Only the writer writes into the « green » variables (v2i,sn2i)	

Midterm Exam: Exercise 2 – Atomic shared memory
	

Slide 24	

An offline exercise

•  Try to rigorously prove correctness of this
algorithm	

•  Proving correctness may appear on the final
exam	

