
Architecture trade-offs 
in a planet-scale 
queueing system
Manos Karpathiotakis

London Office



Impressions

Clicks

Service events

Logs
Indexes (search, ...)

Key-value stores

Realtime

Data warehouse

Aggregation

…

ML features

Getting data from point A to point B 

2



Impressions

Clicks

Service events

Logs
Indexes (search, ...)

Key-value stores

Realtime

Data warehouse

Aggregation

…

ML features

Getting data from point A to point B 

Realtime Services

Scribe

Distributed, buffered, multi-tenant pipe 2



Hello World

manos at vm4 > scribe_cat testcat hello
manos at vm4 > scribe_cat testcat world
manos at vm4 > 🁢

manos at vm6 in ~ > ptail –f testcat
hello
foo
bar
world

Logical stream abstraction

manos at vm5 > scribe_cat testcat foo
manos at vm5 > scribe_cat testcat bar
manos at vm5 > 🁢

3



Scale

Millions of machines

Hundreds of thousands of categories/topics

Write: 2.5TB/s

Read: 7TB/s

Scale does not come for free 4



Rough ordering 
guarantees

Available on 
every machine

Slightly lossy,
3 9s to 5 9s

Latency seconds 
to minutes

Retention in 
the days

5



Rough ordering 
guarantees

Available on 
every machine

Slightly lossy,
3 9s to 5 9s

Latency seconds 
to minutes

Retention in 
the days

This talk

5



Data Completeness

6



Multiple customers are unwilling to “pay” for completeness

Customers willing to lose data?!

● High volumes generated in real time (“nowhere to park the data”)

● Lossy or sampled upstream (“not making things worse”)

● Statistical in nature where small losses not critical (ML use cases)

● Data freshness imperative (“stale data is useless data”)

7



Data plane

Write 
service

LogDevice

Periodic job

Write 
service

Producer Scribed

Service discovery

Storage:
LogDevice
Cluster(s)

Periodic job

Write 
service

Write 
service Write 

service

Read 
service

Consumer

(category, message)

(Big) Aggregation Tree 8



Write path

Write 
service

Producer Scribed

LogDevice

Periodic 
job

LogDevice

Write 
service

Write 
service

LogDevice is durable storage

But on the way, single copy in memory

When to acknowledge producer operations?

1. Once processed in the producer?

2. Once processed in the write service?

3. Once stored in LogDevice?

Offer customers multiple flavors
9



High durability flavor

Acknowledgement once stored in LogDevice

Increased duplication

Less aggressive batching => Lower throughput

Lower latency

Write 
service

Producer Scribed

LogDevice

Periodic 
job

LogDevice

Write 
service

Write 
service

10At least once semantics (…on write path)



Producer (optionally) acknowledges upon receival

Accept small amount of data loss

Heavy batching provides high scalability

“Approximately once” semantics

High throughput flavor

Write 
service

Producer Scribed

LogDevice

Periodic 
job

LogDevice

Write 
service

Write 
service

11“Approximately once” semantics



Read path

Write 
service

LogDevice

Periodic job

Service discovery

LogDevice

Periodic job

Write 
service

Read 
service

Consumer

Single logical copy for each message

What if cluster unavailable:

● Data unavailable

Options

● Accept loss and carry on

● Wait

● Abort
“Clean” layering minimizes complexity yet is prone to data loss 12



(Rough) Ordering

13



Storage

LogDevice

Periodic job

Service discovery

LogDevice

Periodic job

Each LogDevice cluster has a set of configured logs

● Each log holds data for only one category
● One category can have multiple logs
● Logs have a maximum throughput

Periodic job responsibilities

● Publish which categories have data
● Split logs if they get hot

14



Storage

Write 
service

LogDevice

Periodic job

Write 
service

Service discovery

LogDevice

Periodic job

Write 
service

Write 
service Write 

service

Read 
service

When Write Service sees (cat, msg)

● Pick a cluster
● Pick any log for cat
● Append msg

When read service sees (cat, time)

● Lookup clusters with data for cat
● Lookup time in all relevant logs
● Merge streams for logs into single output

15



Properties

Traffic to a single category scales horizontally

Consecutive writes can end up in entirely different clusters

Top priorities

● Scalability
● (Write) availability

Lost in the process

● Ordering guarantees
● Repeatable reads

16



Relaxed semantics in favor of read availability

Rough ordering

17

Reduce blast radius of stragglers



When relaxing semantics, let users decide

There is no free lunch

Inherent trade-off between scale, operational complexity, and semantics

● Often, the semantics are held constant (“no loss”, “strict ordering”)

● In Scribe’s case, scale is imposed by company growth

● Relaxing semantics as a tool to manage complexity

● Users can still build (more) reliable apps over Scribe (at an extra cost)

18



Further information
[2019] Facebook eng blog post

engineering.fb.com/data-infrastructure/scribe

[2019] Tech talk Systems@Scale NYC

facebook.com/atscaleevents/videos/509450066277552

[2016] Realtime Data Processing at Facebook

research.fb.com/publications/realtime-data-processing-at-facebook
19

https://engineering.fb.com/data-infrastructure/scribe/
https://www.facebook.com/atscaleevents/videos/509450066277552/
https://research.fb.com/publications/realtime-data-processing-at-facebook/


Questions?

22



Background

Scribe has been around for 10+ years

Initial purpose was to batch and store logs

Purpose evolved a lot over the years

Rearchitected multiple times to cope with scale

23



logdevice.io

LogDevice

Distributed storage

Log as a primitive

Ideal for streams of data

24



Rough ordering

C1
ts = 7

... ...C2
ts = 
12

C3
ts = 
15

C4
ts = 
15

C5
ts = 
20

Log C, in cluster X

D1
ts = 4

... ...D2
ts = 5

D3
ts = 9

D4
ts = 
12

D5
ts = 
23

Log D, in cluster X

E1
ts = 2

... ...E2
ts = 4

E3
ts = 
11

E4
ts = 
12

E5
ts = 
12

Log E, in cluster Y

Read 
Service

C1
ts = 7

... ...E4
ts =12

C2
ts = 
12

D1
ts = 4

C3
ts = 
15

Output

Window = 10

25Relaxed semantics in favor of read availability
Reduce blast radius of stragglers


