Distributed systems

Abortable Consensus

Prof R. Guerraoui
Distributed Programming Laboratory

|

d
s gg&é C

A
\;f//é

1

Abortable Consensus B

|

Abortable Consensus

* In the consensus problem, the processes
propose values and have to agree on one
among these values

* In weak consensus processes do not always
need to decide: they can abort in case of
contention

Specification

AC1. Validity. Any value decided is a value
proposed

AC2. Agreement: No two processes decide
differently

AC3. Termination: Every process that
proposes a value eventually decides or aborts

ACA4. Decision: If a single process proposes
infinitely often, it eventually decides

Abort

Special value: _|
Propose(V)
Decide(v)
Decide(_|)) = Abort

Abort

Process might abort if another process
concurrently tries to propose a value

If only one process keeps proposing,
then this process eventually decides

R
un 1
OK
deci
de(])

p1—|—>

pro
- pose(1)
propose(0 d
) ecide(|)
decide(|)

p3 |

pro
pose
(0)

Run 2 o
K

pro
pose(
0)
deci
1de
(|) Ppropos
e(0)
deci
1de(0
)

—r

pro
pose
(1)

p2 —d|—|—|—>
ecide(
1)
propose(0)
decide -
- pose(1)
decid
e(0)

p3 |

Run 3 O
K

propos
e(0)
decid
e(|) Propos (
e(0)
decid
e(])

—r

pro
pose
(1)

p2 —d|—|—|—>
ecide(
1)
propose(0)
decide -
- pose(1)
decid
e(])

p3 |

Run 4

propose(®) - A oreement violated dccide(0)

P e

propose(1) decide(1)
propose(0) decide(0)

p34|——_|_>

10

Run 5 Ok

0
proposet) decide(0)

p1—|—>

propose(1) decide(0)

propose(0) decide(0)
e e

11

RW Abortable Consensus Alg.

® Majority of correct processes
* Fail-silent
* No failure detector

12

RW Abortable Consensus Alg.

® Fach processes keeps estimate of proposal
and timestamp

®* Two phases

® Read phase: check if estimate of the decision
In system

* Write phase: reach a decision
* Any phase can abort - decide(_l)

13

Read Phase

~ Implements: Abortable Consensus (ac).

Uses:

~ BestEffortBroadcast (beb).

~ PerfectPointToPointLinks (pp2p).
~ upon event < Init > do
tstamp := rank(self)

14

Read Phase

upon event < acPropose, v> do
tstamp := tstamp + N
tempvalue := v
trigger <bebBroadcast | [R, tstamp]>
upon event <bebDeliver|pj, [R,ts]>
If rts > ts or wts = ts then
trigger <Send | pj,[Nack]>
else
s :=1s
trigger <Send | pj,[ReadAck,wts,val]>

15

Read Phase

upon event <Receive | pj,[Nack]> do
trigger <acReturn | _I>

upon event <Receive |pj,[ReadAck,ts,v]>
readSet := readSet U {(ts,v)}

upon (|readSet|>N/2) do
(ts,v):=highest(readSet)
iIf v!=_| then tempValue :=v
trigger <bebB | [W tstamp, tempValue]>
Start write phase

16

Write Phase

upon event <bebDeliver|pj, [W,ts,v]>
If rts > ts or wts > ts then
trigger <Send | pj,[Nack]>
else
val :=v
wts ;= ts
trigger <Send | pj,[WriteAck]>

17

Write Phase

upon event <Receive | pj,[Nack]> do
trigger <acReturn | _I>

upon event <Receive |pj,[WriteAck]>
WACks++

upon (WAcks > N/2) do
readSet := empty
wAcks := 0
trigger <acReturn | tempValue>

18

Do we need rts ?
Example with only one ts

propose(0) decide(0)
pl
R\ (/ W: 1/
Others
R W:2

decide(1)

propose(1)

19

With rts

decide(|)

propose(0)
pl

R: 1\ (/
Others ISl

propose(1)

decide(1)

20

