
Distributed systems

Abortable Consensus

Prof R. Guerraoui
Distributed Programming Laboratory

2

Abortable Consensus B

A

C

3

Abortable Consensus
•  In the consensus problem, the processes

propose values and have to agree on one
among these values

•  In weak consensus processes do not always
need to decide: they can abort in case of
contention

4

Specification
 AC1. Validity: Any value decided is a value
proposed

 AC2. Agreement: No two processes decide
differently

 AC3. Termination: Every process that
proposes a value eventually decides or aborts

 AC4. Decision: If a single process proposes
infinitely often, it eventually decides

5

Abort
"  Special value:
"  Propose(v)
"  Decide(v)
" Decide() à Abort

 _׀

 _׀

6

Abort
"  Process might abort if another process

concurrently tries to propose a value
"  If only one process keeps proposing,

then this process eventually decides

7

p1

p2

p3

propose(0)

decide() propose(1)

propose(0)

Run 1

|_

decide() |_

decide() |_

OK

8

p1

p2

p3

propose(0)

decide()
propose(1)

propose(0)

Run 2

|_

decide() |_

decide() |_

propose(0) decide(0)

propose(1) decide(0)

OK

9

p1

p2

p3

propose(0)

decide()
propose(1)

propose(0)

Run 3

|_

decide() |_

decide() |_

propose(0)

propose(1)

decide() |_

decide() |_

OK

10

Run 4

p1

p2

p3

propose(0)

decide(1) propose(1)

propose(0) decide(0)

crash

decide(0) Agreement violated

11

p1

p2

p3

propose(0)

decide(0) propose(1)

propose(0) decide(0)

crash

decide(0)

Run 5 OK

12

RW Abortable Consensus Alg.
•  Majority of correct processes

•  Fail-silent

•  No failure detector

13

RW Abortable Consensus Alg.
•  Each processes keeps estimate of proposal

and timestamp

•  Two phases

•  Read phase: check if estimate of the decision
in system

• Write phase: reach a decision

•  Any phase can abort à decide() ׀_

14

Read Phase
"   Implements: Abortable Consensus (ac).

"   Uses:

"   BestEffortBroadcast (beb).

"   PerfectPointToPointLinks (pp2p).

"   upon event < Init > do

•  tstamp := rank(self)

15

Read Phase
upon event < acPropose, v> do
 tstamp := tstamp + N
 tempvalue := v
 trigger <bebBroadcast | [R, tstamp]>

upon event <bebDeliver|pj, [R,ts]>
 if rts ≥ ts or wts ≥ ts then
 trigger <Send | pj,[Nack]>
 else
 rts := ts
 trigger <Send | pj,[ReadAck,wts,val]>

16

Read Phase
upon event <Receive | pj,[Nack]> do
 trigger <acReturn | >

upon event <Receive |pj,[ReadAck,ts,v]>
 readSet := readSet U {(ts,v)}

upon (|readSet|>N/2) do
 (ts,v):=highest(readSet)
 if v != then tempValue := v
 trigger <bebB | [W,tstamp, tempValue]>

 _׀

 _׀

Start write phase

17

Write Phase
upon event <bebDeliver|pj, [W,ts,v]>
 if rts > ts or wts > ts then
 trigger <Send | pj,[Nack]>
 else
 val := v
 wts := ts
 trigger <Send | pj,[WriteAck]>

18

Write Phase
upon event <Receive | pj,[Nack]> do
 trigger <acReturn | >

upon event <Receive |pj,[WriteAck]>
 wAcks++

upon (wAcks > N/2) do
 readSet := empty
 wAcks := 0
 trigger <acReturn | tempValue>

 _׀

19

p1

p2

propose(0) decide(0)

propose(1)

Do we need rts ?
Example with only one ts

Others

R 0

R 0

W:1

W:2
decide(1)

20

p1

p2

propose(0)

propose(1)

With rts

Others

R:1 0

R:2 0

W:1

W:2
decide(1)

rts = 2
NACK

decide() |_

