
NBAC (Problem 2)

Tuesday, 21 December 2010

The problem

• Give an algorithm which implements NBAC
in an asynchronous environment, using a
Reliable broadcast, Best-effort broadcast (beb),
and failure detectors ?P, and <>S.

Tuesday, 21 December 2010

What is NBAC?

• NBAC1. Agreement: No two processes
decide differently

• NBAC2. Termination: Every correct process
eventually decides

• NBAC3. Commit-Validity: 1 can only be
decided if all processes propose 1

• NBAC4. Abort-Validity: 0 can only be
decided if some process crashes or votes 0

Tuesday, 21 December 2010

Implementing NBAC

• In the class:

• NBAC = beb + ucons + P

• Is P really necessary?

• NBAC4 mentions “some process”

• hence, no (there are weaker FDs which
solve NBAC)

Tuesday, 21 December 2010

?P

• Anonymous Completeness: If some
process crashes, then there is a time after
which every correct process permanently
detects a crash.

• Anonymous Accuracy: No crash is
detected unless some process crashes.

Tuesday, 21 December 2010

Outline of the idea

• Every process casts its vote

• Waits for all other votes, or a crash from ?P

• If there was a crash, or there is a vote “no”

• run consensus with “abort”

• else, run consensus with “commit”

• Implement consensus

Tuesday, 21 December 2010

Pseudo code (book)

Implements:
 NonBlockingAtomicCommit, instance nbac.
Uses:
 BestEffortBroadcast, instance beb;
 UniformConsensus, instance uc;
 EventuallyPerfectFailureDetector, instance ?P.

upon event nbac, Init do
 voted := ∅;
 proposed := FALSE;

Tuesday, 21 December 2010

Pseudo code (book)

upon event <?P,Crash> do
 if proposed = FALSE then
 trigger <uc, Propose | ABORT>;
 proposed := TRUE;

upon event <nbac, Propose | v> do
 trigger <beb, Broadcast | v>;

Tuesday, 21 December 2010

Pseudo code (book)
upon event <beb, Deliver | p, v > do
 if v = ABORT ∧ proposed = FALSE then
 trigger <uc, Propose | ABORT>;
 proposed := TRUE;
 else
 voted := voted ∪ {p};
 if voted = Π ∧ proposed = FALSE do
 trigger <uc, Propose | COMMIT>;
 proposed := TRUE;

upon event <uc, Decide | decided> do
 trigger <nbac, Decide | decided>;

we wait for all processes here!
the trick is that we won’t wait forever, due

to the eventual failure detector

Tuesday, 21 December 2010

Consensus

• FLP: Impossible to solve in asynchronous
environment, when one process may crash

• can be circumvented by using Failure
Detectors and correct majority

• In the class:

• solving Consensus using P, and <>P

Tuesday, 21 December 2010

Can we use ♢S?

• Short answer: “yes”

• Long answer follows...

Tuesday, 21 December 2010

♢S

• Strong Completeness: Eventually,
every process that crashes is permanently
suspected by every process.

• Eventual Weak Accuracy: Eventually,
some correct process is never suspected.

• we can have a unique correct process
recognized by other processes (hint, hint)

Tuesday, 21 December 2010

Outline of the idea

• There is a correct process which is not
suspected by anyone

• hence, if that process is the leader during
some time, it can make a decision, and
use reliable broadcast to disseminate

Tuesday, 21 December 2010

Algorithm

• Use rotating coordinator

• Asynchronous “rounds”

• all messages are either to, or from the
coordinator

• each round has 4 phases

Tuesday, 21 December 2010

Algorithm

• Phase 1: Every node sends the estimate to
the coordinator, timestamped with the round
in which it adopted the value

• Phase II: the coordinator waits for majority of
estimates

• picks the one with the highest timestamps

• broadcasts the new estimate

Tuesday, 21 December 2010

Algorithm
• Phase III:

• if a node suspect the coordinator, it nacks the
estimate

• otherwise, it adopts the estimate, and acks it

• Phase IV:

• the coordinator waits for majority of responses

• if the coordinator gets a majority of acks, it
rbcasts the decision

Tuesday, 21 December 2010

Pseudo code: Init
Implements:
 UniformConsensus, instance uc.
Uses:
 EventuallyStrongFailureDetector, instance ♢S;

 BestEffortBroadcast, instance beb;
 UniformReliableBroadcast, instance urb.

upon event <uc, Init> do
 round := 1; suspected := ∅;
 estimate := ⊥;
 votes := [⊥]N; estimates := [⊥]N ;

Tuesday, 21 December 2010

Pseudo code: Phase I

upon event <uc, Propose | v> such that proposal = ⊥
do
 estimate := v;
 begin_round();

function begin_round() do
 trigger <beb, Broadcast|[ESTIMATE,tsp,estimate]>

Tuesday, 21 December 2010

Pseudo code: Phase II

upon event <beb,Deliver|p,[ESTIMATE,r,ts,v]> such that r=round
do //only leader
 est[p] =(ts,v)

upon event #(est) > N/2 do // only leader
 (ts,estimate) := highest(est);
 trigger <beb,Broadcast|[PROPOSE,round,estimate]>

Tuesday, 21 December 2010

Pseudo code: Phase III

upon event <beb, Deliver| p, [PROPOSE,r,v]>
 such that leader(round) = p do
 estimate := v;
 tsp := r;
 trigger <beb, Broadcast|[ACK,r]>;
 round = round+1;
 begin_round();

Tuesday, 21 December 2010

Pseudo code: Phase III

upon event <♢S, Suspect | p> do

 suspected := suspected ∪ {p};
 if leader(round) = p then
 trigger <beb, Broadcast|[NACK,round]>;
 round = round+1;
 begin_round();

upon event <♢S, Restore | p do

 suspected := suspected \ {p};

Tuesday, 21 December 2010

Pseudo code: Phase IV
upon event <beb, Deliver|p, [ACK,r]> such that r=round
do // only leader
 votes[p] := ack;

upon event <beb, Deliver|p, [NACK,r]> such that r=round
do // only leader
 votes[p] := nack;

upon #(votes) > N/2 do // only leader
 if |v: v in votes ∧ v = ack| > N/2 then
 trigger <urb, Broadcast|[DECIDED, estimate]>;

upon <urb, Deliver|[DECIDED, v]> do
 trigger <uc, Decide|v>;

Tuesday, 21 December 2010

