
Concurrent Algorithms 2018
Midterm Exam Solutions

1

Problem 1

• Task: Write an algorithm that implements a MRSW atomic M-valued
register using (any number of) SRSW regular M-valued registers.

• Solution:

SRSW regular M-valued → SRSW atomic M-valued → MRSW atomic M-valued

(see lecture slides)

2

Problem 2 – register-swap

• Task: Write an algorithm that implements wait-free consensus for n
processes in this setting.

Variables:
Shared MWMR atomic registers A and B.

procedure register-swap(A, B)
tempA = A
tempB = B
A = tempB
B = tempA

3

Problem 2 – register-swap

• R[1, …, N] = {⊥, …, ⊥}

• Winner[1, …. N] = {⊥, …, ⊥}

• Decided = won

procedure propose(v)
R[i] = v
register-swap(Winner[i], Decider)
j = unique index in Winner with Winner[j] = won
return R[j]

4

Problem 2 – register-swap

• R[1, …, N] = {⊥, …, ⊥}

• Winner[1, …. N] = {⊥, …, ⊥}

• Decided = won

procedure propose(v)
R[i] = v
register-swap(Winner[i], Decider)
j = unique index in Winner with Winner[j] = won
return R[j]

First processes that does
the swap “wins” the
consensus

5

Problem 3 – test-and-set

Variables:

V=0 (binary register)

procedure test-and-set()

temp = V

if temp = 0 then

V = 1

return temp

6

Problem 3 – test-and-set

R[2] = {⊥, ⊥}
X // test-and-set object

procedure proposei(v) // i in {0, 1}
R[i] = v
result = x.test-and-set()
if (result == 0)

return R[i]
else

return R[1 – i]

test-and-set
solves consensus
for 2 processes.

7

Problem 3 – test-and-set

R[2] = {⊥, ⊥}
X // test-and-set object

procedure proposei(v) // i in {0, 1}
R[i] = v
result = x.test-and-set()
if (result == 0)

return R[i]
else

return R[1 – i]

test-and-set
solves consensus
for 2 processes.

But not for 3 processes.

8

Problem 3 – test-and-set

S0

State: state of all the processes
and of the shared objects

9

Problem 3 – test-and-set

S0 S1

Process p5 takes a step

10

A step corresponds to the access (read or modify) of some shared object.

Problem 3 – test-and-set

S0 S1

Process p5 takes a step

S2

11

Problem 3 – test-and-set

S0 S1

Process p5 takes a step

S2 …

12

Problem 3 – test-and-set

S0

A state is bivalent if the decision is not yet fixed.
Processes could decide 0 or 1.

S4 S5
…

S2 S3
…

Processes
decide 0

Processes
decide 1

13

Problem 3 – test-and-set

S0

A state is bivalent if the decision is not yet fixed.
Processes could decide 0 or 1.

S4 S5
…

S2 S3
…

Processes
decide 0

Processes
decide 1

S0 is bivalent

14

Problem 3 – test-and-set

S0

A state is univalent if the decision is fixed.

S4 S5
…

S2 S3
…

Processes
decide 0

Processes
decide 1

S5 is univalent.
All processes starting
from S5 decide on one
specific value.

15

Problem 3 – test-and-set

S0

p0 p1propose(0) propose(1)

will decide 0.

solo run

16

Problem 3 – test-and-set

S0

p0 p1propose(0) propose(1)

will decide 1.

solo run

17

Problem 3 – test-and-set

S0

Every consensus algorithm has an initial bivalent state.

p0 p1propose(0) propose(1)

will decide 1.

solo run

18

Problem 3 – test-and-set

Every consensus algorithm has a state that:
• is bivalent;
• if any process takes a step, the new state is univalent.

Also known as a critical state.

19

Problem 3 – test-and-set S9

Every consensus algorithm has a state that:
• is bivalent;
• if any process takes a step, the new state is univalent.

Also known as a critical state.

Suppose not. As long as a process can take steps
without reaching a univalent state, let that process
take steps.

p2 takes steps

20

Problem 3 – test-and-set S9

Every consensus algorithm has a state that:
• is bivalent;
• if any process takes a step, the new state is univalent.

Also known as a critical state.

S10

Suppose not. As long as a process can take steps
without reaching a univalent state, let that process
take steps.

p2 takes steps

21

Problem 3 – test-and-set S9

Every consensus algorithm has a state that:
• is bivalent;
• if any process takes a step, the new state is univalent.

Also known as a critical state.

S10

Suppose not. As long as a process can take steps
without reaching a univalent state, let that process
take steps.

p2 takes steps

p2 takes steps…

S∞

22

Problem 3 – test-and-set S9

Every consensus algorithm has a state that:
• is bivalent;
• if any process takes a step, the new state is univalent.

Also known as a critical state.

S10

Suppose not. As long as a process can take steps
without reaching a univalent state, let that process
take steps.

p2 takes steps

p2 takes steps…

S∞

not wait-free
23

Problem 3 – test-and-set

S15
S15 is a critical state.
In other words:
• S15 is bivalent
• Any process that takes a step

reaches a univalent state S16S17

p0
p1

24

Problem 3 – test-and-set

Assume there is a consensus algorithm for 3 processes p0, p1, and p2

that only uses read/write and test-and-set objects.

There should be a critical state.

25

Problem 3 – test-and-set

S15

S16
S17

p0 p1

S18

p2

0-valent 0-valent

1-valent

26

Problem 3 – test-and-set

S15

S16
S17

p0 p1

S18

p2

0-valent 0-valent

1-valent

27

Can the steps be reads?

Problem 3 – test-and-set

S15

S16
S17

p0 p1

S18

p2

0-valent 0-valent

1-valent

28

Can the steps be reads?

No!

Problem 3 – test-and-set

S15

S16
S17

p0 p1

S18

p2

0-valent 0-valent

1-valent

29

Can the steps be writes?

Problem 3 – test-and-set

S15

S16
S17

p0 p1

S18

p2

0-valent 0-valent

1-valent

30

Can the steps be writes?

No!

Problem 3 – test-and-set

S15

S16
S17

p0 p1

S18

p2

0-valent 0-valent

1-valent

31

So steps need to be
test-and-sets

Problem 3 – test-and-set

S15

S16S17

P0 x.t&s() P1 y.t&s()

0-valent

1-valent

32

Can it be test-and-sets
on different objects?

S18

P2 z.t&s()

0-valent

Problem 3 – test-and-set

S15

S16S17

P0 x.t&s() P1 y.t&s()

0-valent

1-valent

33

P1 y.t&s() P0 x.t&s()

A contradiction.

S18 S19

S18

P2 z.t&s()

0-valent

Can it be test-and-sets
on different objects?

P2 cannot distinguish between S18 and S19!

Problem 3 – test-and-set

S15

S16S17

P0 x.t&s() P1 x.t&s()

0-valent

1-valent

34

So, all processes use the
same test-and-set object.

S18

P2 x.t&s()

0-valent

S18 S19

Problem 3 – test-and-set

S15

S16S17

P0 x.t&s() P1 x.t&s()

0-valent

1-valent

35

So, all processes use the
same test-and-set object.

S18

P2 x.t&s()

0-valent

P2 x.t&s() P2 x.t&s()

S18 S19

Problem 3 – test-and-set

S15

S16S17

P0 x.t&s() P1 x.t&s()

0-valent

1-valent

36

So, all processes use the
same test-and-set object.

S18

P2 x.t&s()

0-valent

P2 x.t&s() P2 x.t&s()

P2 cannot distinguish between S18 and S19!S18 S19

Problem 3 – test-and-set

S15

S16S17

P0 x.t&s() P1 x.t&s()

0-valent

1-valent

37

So, all processes use the
same test-and-set object.

S18

P2 x.t&s()

0-valent

P2 x.t&s() P2 x.t&s()

Let P2 run. It will
decide 0.

Let P2 run. It will
decide 1.

P2 cannot distinguish between S18 and S19!S18 S19

Problem 3 – test-and-set

S15

S16S17

P0 x.t&s() P1 x.t&s()

0-valent

1-valent

38

So, all processes use the
same test-and-set object.

S18

P2 x.t&s()

0-valent

P2 x.t&s() P2 x.t&s()

P2 cannot distinguish between S18 and S19!

A contradiction.

Let P2 run. It will
decide 0.

Let P2 run. It will
decide 1.

S18 S19

Problem 3 – test-and-set

39

In other words, the consensus
number of test-and-set is 2.

Problem 4 – queue

40

Double-ended queue with a total of 3 peek operations.

procedure peek(end)
if peeks_invoked == 3

return ⊥
peeks_invoked=peeks_invoked+1
if end = HEAD

return list.first()
else

return list.last()

Problem 4 – queue

41

Double-ended queue with a total of 3 peek operations.

procedure peek(end)
if peeks_invoked == 3

return ⊥
peeks_invoked=peeks_invoked+1
if end = HEAD

return list.first()
else

return list.last()

Task: Solve consensus for 4
processes.

Problem 4 – queue

42

Double-ended queue with a total of 3 peek operations.

procedure propose(v)
deque.enqueue(HEAD, v)
winner = deque.peek(TAIL)
if winner != ⊥

return winner
else

return deque.dequeue(TAIL)

Problem 4 – queue

43

Double-ended queue with a total of 3 peek operations.

procedure propose(v)
deque.enqueue(HEAD, v)
winner = deque.peek(TAIL)
if winner != ⊥

return winner
else

return deque.dequeue(TAIL) At most 1 process
would dequeue.

