Computability In
Population Protocols

Peva Blanchard
EPFL 2014/2015

Population Protocol

@ Agent : no id, small memory

Population Protocol

Population arbitrary size n

Population Protocol

Initially: sensors give data

Population Protocol

Initially: sensors give data

red blue

Population Protocol

Initially: sensors give data

red blue

|

INitial states

Population Protocol

Agents move

Population Protocol

Agents move

6

@

Population Protocol

Agents move

Py

Population Protocol

Agents move

P

Population Protocol

Protocol rule

P

a,b » C,0

Population Protocol

Protocol rule

o°

a,b » C,0

Population Protocol

Protocol rule
00

(d’

£

What is computable ?

What is computable ?

What can the agents know about
the initial configuration ?

What is computable ?

What can the agents know about
the initial configuration ?

No 10

|

Only numbers of "species’

What is computable ?

What can the agents know about
the initial configuration ?

What is computable ?

What can the agents know about
the initial configuration ?

What is computable ?

What can the agents know about
the initial configuration ?

< 4
< #blue
< #blue + 2#red

< #blue x #red

What is computable ?

What can the agents know about
the initial configuration ?

Horeen < 4 '%J
poen <4 gy

#green

#oreen < #blue + D#tred

= — e ee—

|

 #green < #Dblue x #reg

| I

-

oredicate P computable

oredicate P computable

There exists a protocol A such that

oredicate P computable

There exists a protocol A such that

for any population size

oredicate P computable

There exists a protocol A such that

for any population size

e ®

€
for any input assignment @ 9

6 6
¢ L

>

oredicate P computable

There exists a protocol A such that
for any population size

8
for any input assignment ‘@ @ @

6 6
@@@

L 2

€
@99
L 2

@ O
6

eventually all agents output P s

-2 #blue < 4 (naive)

-2 #blue < 4 (naive)

Assume a unigue leader @
with counter, initially O

-2 #blue < 4 (naive)

Assume a unigue leader @
with counter, initially O

0 @

» counter -=2

-2 #blue < 4 (naive)

Assume a unigue leader @
with counter, initially O

O @

» counter -=2

-2 #blue < 4 (naive)

Assume a unigue leader @
with counter, initially O

O @

and mark them as seen.

» counter -=2

-2 #blue < 4 (naive)

Assume a unigue leader @
with counter, initially O

0 @

and mark them as seen.

» counter -=2

Leader output 1 iff counter < 4

other agents copy leader’s output.

#green - 2 #blue < 4 (naive)

#1. How to elect a leader ?

N

#2. How to bound memory ?

-2 #blue < 4

Leader election: each agent has a leader bit
initially, all leaders

0 0

-2 #blue < 4

Leader election: each agent has a leader bit
initially, all leaders

O 0—0 6
o £ O

-2 #blue < 4

Leader election: each agent has a leader bit
initially, all leaders

O 0—0 6
o £ O
o 0—0 6
o £ O

-2 #blue < 4

Leader election: each agent has a leader bit
initially, all leaders

O 0—0 6
o £ O
o 0—0 6
o £ O
60 —006

-2 #blue < 4

Counter issue

Fix a large enough limit, e.g. s> 95

-2 #blue < 4

Counter issue

Fix a large enough limit, e.g. s> 95

All agents have counter —5§ U< S

-2 #blue < 4

Counter issue

Fix a large enough limit, e.g. s> 95

All agents have counter —5§ U< S

nitially 9 Uinit = —2
@ Uinit —

-2 #blue < 4

Counter issue

Fix a large enough limit, e.g. s> 95

All agents have counter —5§ U< S

nitially 8 Uinit = —2
@ Uinit = 1

Y u= #@ -2#@

agents

-2 #blue < 4

Counter issue

| ¥ 00 Y oo S
£y & — € 6

-2 #blue < 4

Counter issue
£y £ LOIE O

@;*Q\ qg(u,u’) = u+u
& r(u,u’) =0

4
<

2 #blue

#

1
£y — 4 6
=0 .
. - * ovo
nter 1SS @
€y ¢

! @/@O,SU/??
'}

+ U

U

min{ s,

ax{

m

/) _

U

q(u,

,)
u

u

(u

-2 #blue < 4

Counter issue
€y O — € £
Z
/ZO%?

g(u,v') = max{—s, min{s,u + u'}} G/GQ’S
“m

r(u,u’) =u+u" —q(u,v’) remainder

Invariant Z U = #@ —2#9

agents

-2 #blue < 4

Putting things together 9 Uimip = —2

@ Uinit = 1
L .y 00 LL L
£:) ROO,

q(u,u') = max{—s, min{s,u + u'}}

r(u,u’) = u+u —q(u,u)

J_@ J_ >J_@ J_

non-leaders copy leader's output

Proof strategy

A. BEventually a single leader

B. Eventually, the leader collects the value

max{—s, min{s, #@ - 2#9}}

C. Eventually, the agents produce correct outputs

Proof strategy

A. Eventuallx@%gle leader

B. Eventually, the leader collects the value

max{—s, min{s, # oy < 13

C. Eventually, the agents produce correct outputs

Proof strategy

A. Eventuallx@%(gle leader

B. Eventually, the Iea%@ollécgsbféé value
(%,mag{x/ min{ s, #ﬁ 2 #@}}

C. Eventually, the agents produce correct outputs

Proof strategy C. Eventually, correct outputs

-2#9}}

uy, = max{—s, min{s, #4

Proof strategy C. Eventually, correct outputs

ur, = max{—s, min{s, #@ - 2#@}}
f #@ —2#9 <4 then wuj = <(#@ _2#9

or — S
\

Ii #@—2#9 > 4 then uL:<(#@_2#Q

or s

\\

Proof strategy C. Eventually, correct outputs

ur, = max{—s, min{s, #@ - 2#9}}
f #@ —2#9 <4 then wuj = <(#@ _2#9

or — S
\

Ii #@—2#9 > 4 then uL:<(#@_2#Q

or s

\\

L eader gets correct output

Proof strategy C. Eventually, correct outputs

ur, = max{—s, min{s, #@ - 2#9}}
f #@ —2#9 <4 then wuj = <(#@ _2#8

or — S
\

Ii #@—2#9 > 4 then uL:<(#@_2#Q

or s

\\

L eader gets correct output

Others get correct output on meeting the leader

Proof strategy C. Eventually, correct outputs

ur, = max{—s, min{s, #g} -9 #“}}

ﬁ 2#“ < 4 then
a#

0 @

L eader gets correct output

Others get correct output on meeting the leader

a - #o1+ - +ar - Fop <c

a; - #0014+ -+ ag - #o0r =c mod m

boolean combinations

Presburger arithmetics

a1 - #o1+ - +ag - Fop <c

a1 -#o1+---+ag-H#Hop =c¢c modm

boolean combinations

Presburger arithmetics

(beware: integer coefficients)

What about multiplication ?

What about multiplication ?

1O’

What about multiplication ?

INntuition
- H#

@
;. #@
L

| /\
N

VA
ek
-
N

O ' #

VA
—
-
)
—
O

What about multiplication ?

INntuition

previous approach requires too much memory

