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eventually all agents output ( )P

predicate P computable
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L

and mark them as seen.

Leader output 1 iff counter  4
other agents copy leader's output.

(naive)

BUT
#1. How to elect a leader ?

#2. How to bound memory ?
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q(u, u0) = u+ u0

r(u, u0) = 0(naive)
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Counter issue

u u0 q r
L L*

q(u, u0
) = max{�s,min{s, u+ u0}}

r(u, u0) = u+ u0 � q(u, u0)

truncated sum
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Putting things together

u u0 q r
L L*

q(u, u0
) = max{�s,min{s, u+ u0}}

r(u, u0) = u+ u0 � q(u, u0)

?

uinit = �2

uinit = 1

u u0
????

u u0

non-leaders copy leader's output
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Presburger arithmetics

a1 ·#�1 + · · ·+ ak ·#�k = c mod m

a1 ·#�1 + · · ·+ ak ·#�k < c

boolean combinations

(beware: integer coefficients)
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What about multiplication ?

NO!

Intuition
. #  101 . #  102

. #  103 . #  104

. #  105 etc.

previous approach requires too much memory


