Computability in Population Protocols
 Peva Blanchard
 EPFL 2014/2015

Population Protocol

Agent : no id, small memory

Population Protocol

Agents move

Population Protocol

Agents move

Population Protocol

Agents move

Population Protocol

Agents move

00

Population Protocol

00

Protocol rule

$\mathrm{a}, \mathrm{b} \longrightarrow \mathrm{c}, \mathrm{d}$

Population Protocol

00

Protocol rule

$\mathrm{a}, \mathrm{b} \longrightarrow \mathrm{c}, \mathrm{d}$

Population Protocol

Protocol rule
$\mathrm{a}, \mathrm{b} \longrightarrow \mathrm{c}, \mathrm{d}$

What is computable ?

What is computable ?

What is computable ?

No id
 $$
\Downarrow
$$

Only numbers of "species"

What is computable ?

What is computable ?

$$
\begin{aligned}
& \text { \#green } \leq 4 \\
& \text { \#green } \leq \text { \#blue }
\end{aligned}
$$

What is computable ?

What is computable ?

What can the agents know about the initial configuration?

predicate P computable

predicate P computable

There exists a protocol A such that

predicate P computable

There exists a protocol A such that
for any population size

predicate P computable

There exists a protocol A such that
for any population size
for any input assignment

predicate P computable

There exists a protocol A such that
for any population size
for any input assignment

eventually all agents output

\#green-2 \#blue ≤ 4 (naive)

\#green-2 \#blue ≤ 4 (naive)

Assume a unique leader
 with counter, initially 0

\#green-2 \#blue ≤ 4 (naive)

Assume a unique leader with counter, initially 0

\#green-2 \#blue ≤ 4 (naive)

Assume a unique leader
 with counter, initially 0

\#green-2 \#blue ≤ 4 (naive)

Assume a unique leader
 with counter, initially 0

\#green-2 \#blue ≤ 4 (naive)

Assume a unique leader
 with counter, initially 0

Leader output 1 iff counter ≤ 4 other agents copy leader's output.

\#green-2 \#blue ≤ 4 (naive)

\#1. How to elect a leader?
\#2. How to bound memory ?
 other agents copy leader's output.

$$
\text { \#green - } 2 \text { \#blue } \leq 4
$$

Leader election: each agent has a leader bit initially, all leaders

$$
\text { \#green-2 \#blue } \leq 4
$$

Leader election: each agent has a leader bit initially, all leaders

$$
\text { \#green-2 \#blue } \leq 4
$$

Leader election: each agent has a leader bit initially, all leaders

$$
\text { \#green-2 \#blue } \leq 4
$$

Leader election: each agent has a leader bit initially, all leaders

\#green-2 \#blue ≤ 4

Counter issue
Fix a large enough limit, e.g. $s \geq 5$

\#green-2 \#blue ≤ 4

Counter issue
Fix a large enough limit, e.g. $s \geq 5$
All agents have counter $\quad-s \leq u \leq s$

\#green-2 \#blue ≤ 4

Counter issue
Fix a large enough limit, e.g. $s \geq 5$
All agents have counter

$$
-s \leq u \leq s
$$

initially

$$
u_{i n i t}=-2
$$

$$
u_{i n i t}=1
$$

\#green-2 \#blue ≤ 4

Counter issue
Fix a large enough limit, e.g. $s \geq 5$
All agents have counter $\quad-s \leq u \leq s$

$$
\sum_{2} u=\#-2 t
$$

\#green-2 \#blue ≤ 4

Counter issue

\#gree n-2 \#blue ≤ 4

Counter issue

$$
\begin{array}{ll}
\left(\text { naive }^{\text {V }}\right) & q\left(u, u^{\prime}\right)=u+u^{\prime} \\
r\left(u, u^{\prime}\right)=0
\end{array}
$$

\#gree n-2 \#blue ≤ 4

Counter issue

$$
\begin{aligned}
& \left.\left.{ }^{\operatorname{tr}} \mu_{n}\right\}\right)^{c a t} \alpha_{d}
\end{aligned}
$$

\#gree n-2 \#blue ≤ 4

Counter issue

$$
\begin{aligned}
t_{r} u_{n} \\
a^{\prime} t
\end{aligned} \alpha d s
$$

Invariant $\sum_{\text {agents }} u=\# \varrho^{\infty}-2 \#$

\#green-2 \#blue ≤ 4

Putting things together

$$
u_{i n i t}=-2
$$

$$
u_{i n i t}=1
$$

$$
\begin{aligned}
& q\left(u, u^{\prime}\right)=\max \left\{-s, \min \left\{s, u+u^{\prime}\right\}\right\} \\
& r\left(u, u^{\prime}\right)=u+u^{\prime}-q\left(u, u^{\prime}\right)
\end{aligned}
$$

non-leaders copy leader's output

Proof strategy

A. Eventually a single leader
B. Eventually, the leader collects the value

$$
\max \left\{-s, \min \left\{s, \# \varrho^{\infty}-2 \# \square^{\infty}\right\}\right\}
$$

C. Eventually, the agents produce correct outputs

Proof strategy

A. Eventually 3 Stidgle leader

B. Eventually, the leader collects the value

$$
\max \{-s, \min \{s, \# \backsim-2 \# @\}
$$

C. Eventually, the agents produce correct outputs

Proof strategy

A. Eventually Shoqgle leader
B. Eventually, the leadrensessian

C. Eventually, the agents produce correct outputs

Proof strategy

 C. Eventually, correct outputs$$
u_{L}=\max \{-s, \min \{s, \# \text {-2\# }
$$

Proof strategy

 C. Eventually, correct outputs$$
u_{L}=\max \left\{-s, \min \left\{s, \# @-2 \# \varrho^{\infty}\right\}\right\}
$$

Proof strategy

C. Eventually, correct outputs

$$
u_{L}=\max \left\{-s, \min \left\{s, \# @-2 \# \varrho^{\infty}\right\}\right\}
$$

Leader gets correct output

Proof strategy

C. Eventually, correct outputs

$$
u_{L}=\max \left\{-s, \min \left\{s, \# @-2 \# \varrho^{\infty}\right\}\right\}
$$

Leader gets correct output
Others get correct output on meeting the leader

Proof strategy

C. Eventually, correct outputs

$$
u_{L}=\max \left\{-s, \min \left\{s, \# \infty-2 \# \infty,{ }^{\infty}\right\}\right\}
$$

Leader gets correct output
Others get correct output on meeting the leader

$$
\begin{aligned}
& a_{1} \cdot \# \sigma_{1}+\cdots+a_{k} \cdot \# \sigma_{k}<c \\
& a_{1} \cdot \# \sigma_{1}+\cdots+a_{k} \cdot \# \sigma_{k}=c \quad \bmod m
\end{aligned}
$$

boolean combinations

Presburger arithmetics

$$
\begin{aligned}
& a_{1} \cdot \# \sigma_{1}+\cdots+a_{k} \cdot \# \sigma_{k}<c \\
& a_{1} \cdot \# \sigma_{1}+\cdots+a_{k} \cdot \# \sigma_{k}=c \quad \bmod m
\end{aligned}
$$

boolean combinations

Presburger arithmetics

(beware: integer coefficients)

What about multiplication?

What about multiplication?

What about multiplication?

Intuition

$$
\begin{array}{ll}
1 \cdot \# & 2 \cdot \# \\
3 \cdot \# & 40 \\
5 \cdot \# & \text { etc. }
\end{array}
$$

What about multiplication?

Intuition

$$
\begin{array}{ll}
1 \cdot \# \leq 10 & 2 \cdot \#+\infty \\
3 \cdot \# \leq 10 \\
5 \cdot \# & 4 \cdot \# \text { etc. }
\end{array}
$$

previous approach requires too much memory

