
Computability in
Population Protocols

Peva Blanchard
EPFL 2014/2015

Population Protocol

Agent : no id, small memory

Population Protocol
Population arbitrary size n

Population Protocol
Initially: sensors give data

Population Protocol
Initially: sensors give data

red green blue

Population Protocol
Initially: sensors give data

red green blue

initial states

Population Protocol
Agents move

Population Protocol
Agents move

Population Protocol
Agents move

Population Protocol
Agents move

a
b

Population Protocol
Protocol rule

a
b

a,b c,d

Population Protocol
Protocol rule

c
d

a,b c,d

Population Protocol

13

Protocol rule

a,b c,d
c

d

What is computable ?

What is computable ?

What can the agents know about
the initial configuration ?

What is computable ?

What can the agents know about
the initial configuration ?

No id

Only numbers of "species"

)

What is computable ?

What can the agents know about
the initial configuration ?

#green 4

What is computable ?

What can the agents know about
the initial configuration ?

#green 4
#green #blue

What is computable ?

What can the agents know about
the initial configuration ?

#green 4
#green #blue

#green #blue + 2#red

#green #blue x #red

What is computable ?

What can the agents know about
the initial configuration ?

#green 4
#green #blue

#green #blue + 2#red

#green #blue x #red

OK

NO
K

predicate P computable

There exists a protocol A such that

predicate P computable

There exists a protocol A such that

for any population size

predicate P computable

There exists a protocol A such that

for any population size

for any input assignment

predicate P computable

There exists a protocol A such that

for any population size

for any input assignment

eventually all agents output ()P

predicate P computable

#green - 2 #blue 4 (naive)

Assume a unique leader L
with counter, initially 0

#green - 2 #blue 4 (naive)

Assume a unique leader

L

with counter, initially 0

, counter -= 2

#green - 2 #blue 4

L

(naive)

Assume a unique leader

L

with counter, initially 0

, counter += 1

#green - 2 #blue 4

L , counter -= 2

L

(naive)

Assume a unique leader

L

with counter, initially 0

, counter += 1

#green - 2 #blue 4

L , counter -= 2

L

and mark them as seen.

(naive)

Assume a unique leader

L

with counter, initially 0

, counter += 1

#green - 2 #blue 4

L , counter -= 2

L

and mark them as seen.

Leader output 1 iff counter  4
other agents copy leader's output.

(naive)

Assume a unique leader

L

with counter, initially 0

, counter += 1

#green - 2 #blue 4

L , counter -= 2

L

and mark them as seen.

Leader output 1 iff counter  4
other agents copy leader's output.

(naive)

BUT
#1. How to elect a leader ?

#2. How to bound memory ?

#green - 2 #blue 4

L

Leader election: each agent has a leader bit
 initially, all leaders

L

#green - 2 #blue 4

L

Leader election: each agent has a leader bit
 initially, all leaders

L L

Lor

?

?

#green - 2 #blue 4

L

Leader election: each agent has a leader bit
 initially, all leaders

L L

L L

Lor

Lor

?

?

??

?

#green - 2 #blue 4

L

Leader election: each agent has a leader bit
 initially, all leaders

L L

L L

Lor

Lor

?

?

??

?

? ? ? ?

#green - 2 #blue 4

Counter issue

Fix a large enough limit, e.g. s � 5

#green - 2 #blue 4

Counter issue

Fix a large enough limit, e.g. s � 5

All agents have counter �s  u  s

#green - 2 #blue 4

Counter issue

Fix a large enough limit, e.g. s � 5

All agents have counter �s  u  s

initially uinit = �2

uinit = 1

#green - 2 #blue 4

Counter issue

Fix a large enough limit, e.g. s � 5

All agents have counter �s  u  s

initially uinit = �2

uinit = 1

X

agents

u = # - 2 #

#green - 2 #blue 4

Counter issue

u u0 q r
L L* ?

#green - 2 #blue 4

Counter issue

u u0 q r
L L*

q(u, u0) = u+ u0

r(u, u0) = 0(naive)

?

#green - 2 #blue 4

Counter issue

u u0 q r
L L*

q(u, u0
) = max{�s,min{s, u+ u0}}

r(u, u0) = u+ u0 � q(u, u0)

truncated sum
remainder

?

#green - 2 #blue 4

Counter issue

u u0 q r
L L*

q(u, u0
) = max{�s,min{s, u+ u0}}

r(u, u0) = u+ u0 � q(u, u0)

truncated sum
remainder

Invariant
X

agents

u = # - 2 #

?

#green - 2 #blue 4

Putting things together

u u0 q r
L L*

q(u, u0
) = max{�s,min{s, u+ u0}}

r(u, u0) = u+ u0 � q(u, u0)

?

uinit = �2

uinit = 1

u u0
????

u u0

non-leaders copy leader's output

Proof strategy

A. Eventually a single leader

B. Eventually, the leader collects the value

C. Eventually, the agents produce correct outputs

- 2 #max{�s,min{s, }}

Proof strategy

A. Eventually a single leader

B. Eventually, the leader collects the value

C. Eventually, the agents produce correct outputs

OK

- 2 #max{�s,min{s, }}

Proof strategy

A. Eventually a single leader

B. Eventually, the leader collects the value

C. Eventually, the agents produce correct outputs

OK

cf.	 ex
ercise

	 sess
ion

- 2 #max{�s,min{s, }}

Proof strategy C. Eventually, correct outputs

- 2 #max{�s,min{s, }}uL =

Proof strategy C. Eventually, correct outputs

If then

If then

- 2 #max{�s,min{s, }}uL =

 4# - 2 #

- 2 # > 4

uL =

⇢

or � s
- 2

uL =

⇢

or s

- 2

Proof strategy C. Eventually, correct outputs

Leader gets correct output

- 2 #max{�s,min{s, }}uL =

If then

If then

 4# - 2 #

- 2 # > 4

uL =

⇢

or � s
- 2

uL =

⇢

or s

- 2

Proof strategy C. Eventually, correct outputs

Leader gets correct output

Others get correct output on meeting the leader

- 2 #max{�s,min{s, }}uL =

If then

If then

 4# - 2 #

- 2 # > 4

uL =

⇢

or � s
- 2

uL =

⇢

or s

- 2

Proof strategy C. Eventually, correct outputs

Leader gets correct output

Others get correct output on meeting the leader

- 2 #max{�s,min{s, }}uL =

If then

If then

 4# - 2 #

- 2 # > 4

uL =

⇢

or � s
- 2

uL =

⇢

or s

- 2

QE
D

Presburger arithmetics

a1 ·#�1 + · · ·+ ak ·#�k = c mod m

a1 ·#�1 + · · ·+ ak ·#�k < c

boolean combinations

Presburger arithmetics

a1 ·#�1 + · · ·+ ak ·#�k = c mod m

a1 ·#�1 + · · ·+ ak ·#�k < c

boolean combinations

(beware: integer coefficients)

. #  10

What about multiplication ?

. #  10

What about multiplication ?

NO!

. #  10

What about multiplication ?

NO!

Intuition
. #  101 . #  102

. #  103 . #  104

. #  105 etc.

. #  10

What about multiplication ?

NO!

Intuition
. #  101 . #  102

. #  103 . #  104

. #  105 etc.

previous approach requires too much memory

