
Writing Protocols

Module specification and implementation

Module 1: Interface and properties of protocol module “layer n”
Module:

Name: LayerN, instance ln.
Events:

Request: < ln, EventName1 | parameter1, parameter2 > : Sends request event 1.
Indication: < ln, EventName2 | parameter1, parameter2 > : Sends indication event 2.

Properties:
LN1: Always correct: Everything this module does is correct.
LN2: Always replies: Every request will eventually lead to an indication being delivered.

Algorithm 1: Implementation of module 1
Implements:

LayerN, instance ln.
Uses:

LayerNMinus1, instance ln1. //we need to know the layer below

upon event < ln, Init > do //initialize internal state
state := IDLE;

upon event < ln, EventName1 | param1, param2 > do //event received from upper level
state := WORKING;
trigger < ln1, AnotherEventName | param1 >; //send a request to lower level

upon event < ln1, AnIndicationEvent | param > do //event received from lower level
state := IDLE;
trigger < ln, EventName2 | param, param + 7 >; //send indication to upper level

1 Distributed Algorithms, 2012/2013

Drawing 1: The Figure shows a layer in protocol stack. Layer n is below Layer n+1
and above Layer n-1. Layer n+1 invokes services at Layer n, by sending request
events. Layer n replies to Layer n by sending back indication events.

Layer n

Request

Request

Indication

Indication

Layer n-1

Layer n+1

Writing Protocols

Types of events

upon event < co1 , Event1 | param1, param2, … > do
do something;

Each event is processed through a dedicated handler by the process (i.e., by the corresponding
component). A handler is formulated in terms of a sequence of instructions introduced by upon
event, which describes the event, followed by pseudo code with instructions to be executed. The
processing of an event may result in new events being created and triggering the same or different
components. Every event triggered by a component of the same process is eventually processed, if
the process is correct (unless the destination module explicitly filters the event; see the such that
clause ahead). Events from the same component are processed in the order in which they were
triggered. This first-in-first-out (FIFO) order is only enforced on events exchanged among local
components in a given stack. The messages among different processes may also need to be ordered
according to some criteria, using mechanisms orthogonal to this one.

We assume that every process executes the code triggered by events in a mutually exclusive way.
This means that the same process does not handle two events concurrently. Once the handling of an
event is terminated, the process keeps on checking if any other event is triggered. This periodic
checking is assumed to be fair, and is achieved in an implicit way: it is not visible in the pseudo
code we describe.

upon condition do //an internal event
do something;

For writing complex algorithms, we sometimes use handlers that are triggered when some condition
in the implementation becomes true, but do not respond to an external event originating from
another module. The condition for an internal event is usually defined on local variables maintained
by the algorithm.

upon event < co1 , Event1 | param1, param2, … > such that condition do
do something;

An upon event statement triggered by an event from another module can also be qualified with a
condition on local variables. This handler executes its instructions only when the external event has
been triggered and the condition holds.

2 Distributed Algorithms, 2012/2013

Writing Protocols

Processes and Messages

We abstract the units that are able to perform computations in a distributed system through the
notion of a process. We consider that the system is composed of N different processes, named p, q,
r, s, and so on. The set of processes in the system is denoted by Π. Unless stated otherwise, this set
is static and does not change, and every process knows the identities of all processes. Sometimes a
function rank : Π → {1, . . . , N } is used to associate every process with a unique index between 1
and N . In the description of an algorithm, the special process name self denotes the name of the
process that executes the code. Typically, we will assume that all processes of the system run the
same local algorithm. The sum of these copies constitutes the actual distributed algorithm.

We do not assume any particular mapping of our abstract notion of process to the actual
processors or threads of a specific computer machine or operating system. The processes
communicate by exchanging messages and the messages are uniquely identified, say, by their
original sender process using a sequence number or a local clock, together with the process
identifier. In other words, we assume that all messages that are ever exchanged by some distributed
algorithm are unique. Messages are exchanged by the processes through communication links. We
will capture the properties of the links that connect the processes through specific link abstractions,
which we will discuss in the class.

The message passing assumption entails that there is no notion of shared memory among
processes. Consequently, the modules you will use for implementing a part of the algorithm may
perform one of the following actions:

1. local computation: where they can use local variables, and parameters received through
events or messages.

2. events: a module can send and receive events to/from another module within the same
process.

3. messages: a process can send a message to another process. This is typically abstracted by
the PerfectPointToPointLinks (pl) module. This module resides in the lowest layer of a
process. A process sends a message to another process by issuing an event to the
PerfectPointToPointLinks module (e.g., <pl, Send | TargetProcess, message>).

3 Distributed Algorithms, 2012/2013

Drawing 2: Step of a process. The process receives an
incoming message, does local processing, and sends a response
message.

	Module specification and implementation
	Types of events
	Processes and Messages

