
1 © R. Guerraoui

Registers

Prof R. Guerraoui
Distributed Programming Laboratory

2

Register

!  A register has two operations: read()
and write()

!  Sequential specification

!   read()

!   return(x)

!   write(v)

!   x <- v; return(ok)

3

Simplifications

!   We assume that registers contain only
integers

!   Unless explicitely stated otherwise, registers
are initially supposed to contain 0

4

Space of registers

!   Dimension 1: binary (boolean) – multivalued

!   Dimension 2:
!   SRSW (single reader, single writer)
!   MRSW (multiple reader, single writer)
!   MRMW (multiple reader, multiple writer)

!   Dimension 3: safe – regular – atomic

5

Safe execution

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 25

6

Regular execution

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 1

7

Atomic execution

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

8

2 decades of hard work

!   Theorem: A multivalued MRMW atomic
register can be implemented with binary
SRSW safe register

9

Algorithms

!   The process executing the code is implicitely
assumed to be pi

!   We assume a system of N processes

!   NB. We distinguish base and high-level registers

10

Conventions
!   The operations to be implemented are denoted

Read() and Write()
!   Those of the base registers are denoted read()

and write()

!   We omit the return(ok) instruction at the end
of Write() implementations

11

(1) From (binary) SRSW safe
to (binary) MRSW safe

!   Read()
!   return (Reg[i].read());

!   We use an array of SRSW registers
 Reg[1,..,N]

!   Write(v)
!  for j = 1 to N

!   Reg[j].write(v);

12

!   The transformation works also for multi-
valued registers and regular ones

From (binary) SRSW safe to
(binary) MRSW safe

!   It does not however work for atomic registers

13

(2) From binary MRSW safe to
binary MRSW regular

!   We use one MRSW safe register
!   Read()

!   return(Reg.read());

•  Write(v)
!   if old ≠ v then

!   Reg.write(v);
!   old := v;

14

!   The transformation works for single reader
registers

From binary MRSW safe to
binary MRSW regular

!   It does not work for multi-valued registers

!   It does not work for atomic registers

15

(3) From binary to M-Valued
MRSW regular

!   Read()
!   for j = 0 to M

!   if Reg[j].read() = 1 then return(j)

!   We use an array of MRSW registers
Reg[0,1,..,M] init to [1,0,..,0]

!   Write(v)
!   Reg[v].write(1);
!   for j=v-1 downto 0

!   Reg[j].write(0);

16

!   The transformation would not work if the
Write() would first write 0s and then 1

From binary to M-Valued
MRSW regular

!   The transformation works for regular but NOT
for atomic registers

17

(4) From SRSW regular to
SRSW atomic

!   Read()
!   (t’,x’) = Reg.read();
!   if t’ > t then t:=t’; x:=x’;
!   return(x)

!   We use one SRSW register Reg and two local
variables t and x

!   Write(v)
!   t := t+1;
!   Reg.write(v,t);

18

!   The transformation would not work for
multiple readers

From SRSW regular to
SRSW atomic

!   The transformation would not work without
timestamps

(variable t represents logical time)

19

(5) From SRSW atomic to
MRSW atomic

!   We use N*N SRSW atomic registers
RReg[(1,1),(1,2),..,(k,j),..(N,N)] to
communicate among the readers
!   In RReg[(k,j)] the reader is pk and the

writer is pj

!   We also use n SRSW atomic registers
WReg[1,..,N] to store new values
!   the writer in all these is p1
!   the reader in WReg[k] is pk

20

(5) From SRSW atomic to
MRSW atomic (cont’d)

!   Write(v)
!   t1 := t1+1;
!   for j = 1 to N

!   WReg.write(v,t1);

21

(5) From SRSW atomic to
MRSW atomic (cont’d)

!   Read()
!   for j = 1 to N do

!   (t[j],x[j]) = RReg[i,j].read();
!  (t[0],x[0]) = WReg[i].read();
!   (t,x) := highest(t[..],x[..]);
!   for j = 1 to N do

!   RReg[j,i].write(t,x);
!   return(x)

Value with highest
timestamp

22

From SRSW atomic to
MRSW atomic

!   The transformation would not work for
multiple writers

!   The transformation would not work if the
readers do not communicate (i.e., if a reader
does not write)

23

(6) From MRSW atomic to
MRMW atomic

!   We use N MRSW atomic registers Reg[1,..,N];
the writer of Reg[j] is pj

!   Write(v)
!   for j = 1 to N do

!   (t[j],x[j]) = Reg[j].read();
!   (t,x) := highest(t[..],x[..]);
!   t := t+1;
!   Reg[i].write(t,v);

24

(6) From MRSW atomic to
MRMW atomic (cont’d)

!   Read()
!   for j = 1 to N do

!   (t[j],x[j]) = Reg[j].read();
!   (t,x) := highest(t[..],x[..]);
!  return(x)

