
Secure Distributed Computing EPFL, Fall 2009
Christian Cachin, IBM Research & EPFL LPD www.zurich.ibm.com/˜cca/

4 A Distributed Pseudo-Random Function
A pseudo-random function (PRF) Fx : {0, 1}∗ → {0, 1}k is parameterized by a secret key x
(called the seed) and maps an arbitrary-length input string to a fixed-length, k-bit output string
that looks random to anyone who does not know the secret key. More formally, the PRF is
secure if any efficient adversary who queries an oracle with distinct inputs cannot tell, with
better than negligible probability, whether the oracle responds to the queries by evaluating the
PRF on a random seed (known only to the oracle) or whether the oracle responds every time
with a k-bit string freshly chosen at random with uniform distribution [Gol04].

In practice one implements a PRF by a block cipher with a secret key; distributed imple-
mentations, however, are only known for functions based on public-key cryptosystems. Cachin
et al. [CKS05] describe the following threshold PRF, which is suitable for integration in dis-
tributed protocols.

Algorithm 1 ([CKS05]). Recall the discrete-logarithm setting with G = < g >; let x be a
randomly chosen seed and define a Fx : {0, 1}∗ → {0, 1}k as

Fx(v) = H ′
(
H(v)x

)
,

where H : {0, 1}∗ → G and H ′ : G → {0, 1}k are two hash functions. The family F = {Fx}
is a pseudorandom function, assuming the hardness of the DLP (which can proven formally
when H is modeled as a so-called random oracle).

A threshold PRF can be obtained analogously to threshold ElGamal encryption. Let a
trusted dealer choose the seed x and share it among the servers using a polynomial of degree t,
such that server Pi holds share xi. When it is time to compute Fx(v), every correct server Pi
computes a function share di =

(
H(v)

)xi and releases di according to the protocol. Any t + 1
correctly computed function shares, from servers with indices in a set S, yield the value of the
PRF,

Fx(v) = H ′
(∏
i∈S

di
λS0,i

)
.

Writing h = H(v), this is correct because∏
i∈S

di
λS0,i =

∏
i∈S

hxiλ
S
0,i = h

P
i∈S xiλ

S
0,i = hx.

One can show that this does not leak information about x, under the assumption that the DLP
is hard.

The threshold PRF can replace a sequence of shared coins s0, s1, . . . in a randomized
Byzantine consensus protocol like Algorithm 10 of Chapter 3 (Byzantine Broadcasts and Ran-
domized Consensus). Concretely, one sets output length k = 1 and lets the input string for
coin sr consist of ID‖r, where ID denotes a unique tag identifying the protocol instance that
must also be contained in every message and included in all signatures, and where r denotes
the index of the coin.

1



The threshold pseudorandom function is non-interactive. This means that no interaction
among the servers is needed to compute the function value. To implement the recover operation
for sr in Algorithm 10 of Chapter 3, every server sends its function share of sr to all others,
collects t + 1 shares, and combines them to the coin value Fx(ID‖r).

The threshold PRF as described here tolerates only a passive adversary, but one can easily
make it robust against an active adversary by adding zero-knowledge proofs for the correctness
of the function shares generated by the servers [CKS05].

References

[CKS05] C. Cachin, K. Kursawe, and V. Shoup, Random oracles in Constantinople: Practical
asynchronous Byzantine agreement using cryptography, Journal of Cryptology 18
(2005), no. 3, 219–246.

[Gol04] O. Goldreich, Foundations of cryptography, vol. I & II, Cambridge University Press,
2001–2004.

2


