Self-stabilizing Spanning Tree

Peva BLANCHARD

e 1. The problem

e 2. The algorithm
e 3. Proof

e a. Stability
e b. Convergence

e 4. Conclusion

e 1. The problem

e 2. The algorithm
e 3. Proof

e a. Stability
e b. Convergence

e 4. Conclusion

Spanning-tree

Remember ?

Spanning-tree

Remember ?

Spanning-tree

Self-stabilizing

Spanning-tree

Self-stabilizing

Spanning-tree

Self-stabilizing

nodes = processes Py, - - - , Pn—1

directed edge (p;, pj) : atomic RW register r;;
p; writes to r;

p;i reads from rp,;

/O\‘/T.i/)o
O

e

Model

6/30

Assumptions
e po is a distinguished processor (root) and knows it

@)
Ik

Model

7/30

Model

Assumptions
e o is a distinguished processor (root) and knows it
e each p; knows an ordered list N; of its neighbours

Pi
O— —@:

[

O

2

Ni =41,2,3)

Model

Register r;;
e boolean field parent :

pi points to p; <= rj.parent =1
e integer field dist : distance from the root pg to p;.

P, p.

parent J
O dist O

e 1. The problem

e 2. The algorithm
e 3. Proof

e a. Stability
e b. Convergence

e 4. Conclusion

The algorithm
EXIT

The algorithm
EXIT

The algorithm
EXIT

— 0

The algorithm
EXIT

The algorithm
EXIT

The algorithm
EXIT

()

T 1

The algorithm
EXIT

2 — 1 — O

.

The algorithm

See blackboard (or exercice sheet)

The algorithm

Root pg

—

S
parent. 0
(5 O O

12/30

The algorithm

Non-root p;

13/30

The algorithm

Non-root p;
P
4N
OO0 0 O

13/30

The algorithm

Non-root p;
P
AN
OO0 0 O

13/30

The algorithm

Non-root p;

pi dist from

AN

13/30

The algorithm

Non-root p;

pi dist from

13/30

e 1. The problem

e 2. The algorithm
e 3. Proof

e a. Stability
e b. Convergence

e 4. Conclusion

14/30

Proof

Step at process p;

e sequence of instructions until the next access to some register
(read or write)

e considered atomic here

Proof

Execution
e (infinite) interleaving of steps of processes
e fairness assumption : every process takes infinitely many steps

f @ @ @ —©

16/30

Proof

Asynchronous round

e round 1 : smallest prefix in which each process takes at least one
step. and so on

17/30

Proof

Asynchronous round
e round 1 : smallest prefix in which each process takes at least one
step.
e round 2 : next segment in which each process takes at least one
step and so on

17/30

Proof

Asynchronous round
e round 1 : smallest prefix in which each process takes at least one

step.

e round 2 : next segment in which each process takes at least one
step

e and soon

17/30

e 1. The problem

e 2. The algorithm
e 3. Proof

e a. Stability
e b. Convergence

e 4. Conclusion

Proof - Stability

Configuration
e for each p;, values of local variables I, F, dist
e register values r; for all p;,p;

e program counter : each process may not start at the beginning of
the pseudo-code !

Proof - Stability

Legitimate configuration
e encodes a spanning tree rooted at pg
e distance values in each r; is correct
e the parent p; of p; is the first process in N; with minimal distance

pi dist from

20/30

Proof - Stability

e no process is inclined to change parent or distance
e the set of legitimate configurations is stable

21/30

e 1. The problem

e 2. The algorithm
e 3. Proof

e a. Stability
e b. Convergence

e 4. Conclusion

22/30

Proof - Convergence

Strategy : from an arbitrary initial configuration
e Each register rj eventually holds the correct distance from the
root to p;
e Then, each process p; selects the first valid parent in N; = this
yields a legitimate configuration

23/30

Proof - Convergence

Strategy : from an arbitrary initial configuration
e Each register rj eventually holds the correct distance from the
root to p;
e Then, each process p; selects the first valid parent in N; = this
yields a legitimate configuration

Proof - Convergence

Lemma
Let A = max. nb of neighbours. In every 2\ successive rounds, each
pi # po performs “one loop in the pseudo-code”.

—

read from rij

A write to rmi

L |

24/30

Proof - Convergence

Definition
A floating distance in configuration C is a value in some field r;.dis that
is smaller than the distance from the root to p;.

25/30

Proof - Convergence

Lemma
Let Ex be the suffix of execution after the first A + 4k rounds.

e (Small(k)) For any C € E, if C has a floating distance, then the
smallest floating distance in C is > k

e (Dist(k)) For any C € Ey, the distance values in registers of
processes within distance k from the root are correct

26/30

Proof - Convergence

By induction : E; after A +4A rounds (k = 1)
e each distance field is > 0 in the first (arbitrary) configuration

e Proc p; # po

e during the first 2A rounds, each non-root p; computes diist :
dist > 1

e in the next 2A rounds, each non-root p; writes dist to its registers
T

= afterwards, always r; > 1 for all j. In particular, Small(1) holds

27/30

Proof - Convergence

By induction : E; after A +4A rounds (k = 1)
e each distance field is > 0 in the first (arbitrary) configuration
e root py

o first A rounds : py writes 0 in every ry;

e in the next 2A rounds, each root’s neighbour p; reads 0 in rg;

e in the next 2A rounds, each root’s neighbour p; writes 1 to their
registers distance fields.

= Dist(1) holds

27/30

Proof - Convergence

Assume Small(k) and Dist(k) hold in Ej.
o Let C first config of Ex
e m > k smallest floating distance in Cx

¢ In the next 4A rounds after Ci, each proc that chooses m as the
smallest value assigns m+- 1 to its distance

e Thus, afterwards, smallest floating distance > m+1 > k+1

= Small(k+1) holds in Ex41

28/30

Proof - Convergence

Assume Small(k) and Dist(k) hold in Ej.

e Dist(k) holds in Ej : every proc within distance k from the root
have registers with correct distance

e Let p; be proc at distance kK + 1

e In the next 4A rounds after Cy : p; necessarily chooses value k,
and assigns k + 1 to its register distance fields.

= Dist(k+1) holds in Ex1

28/30

e 1. The problem

e 2. The algorithm
e 3. Proof

e a. Stability
e b. Convergence

e 4. Conclusion

Conclusion

Assumptions
e nprocesses, with a root pg

bidirectional communication with rw register r;

each p; knows a an ordered list of its neighbours

each process takes infinitely many steps
= the algorithm is self-stabilizing

30/30

