Self-stabilizing Spanning Tree

Peva BLANCHARD

-

- 1. The problem
- 2. The algorithm
- 3. Proof
 - a. Stability
 - b. Convergence
- 4. Conclusion

æ

< Ē

- 1. The problem
- 2. The algorithm
- 3. Proof
 - a. Stability
 - b. Convergence
- 4. Conclusion

3/30

Remember?

Remember?

Self-stabilizing

EXIT

5/30

Self-stabilizing

Self-stabilizing

- nodes = processes p_0, \ldots, p_{n-1}
- *directed* edge (*p_i*, *p_j*) : atomic RW register *r_{ij}*
- p_i writes to r_{ij}
- p_i reads from r_{mi}

A D > A B >

Assumptions

• *p*₀ is a distinguished processor (root) and knows it

э

Assumptions

- p₀ is a distinguished processor (root) and knows it
- each *p_i* knows an ordered list *N_i* of its neighbours

Register r_{ij}

• boolean field parent :

$$p_i$$
 points to $p_j \iff r_{ij}.parent = 1$

• integer field *dist* : distance from the root p_0 to p_i .

• 1. The problem

• 2. The algorithm

- 3. Proof
 - a. Stability
 - b. Convergence
- 4. Conclusion

9/30

The algorithm EXIT

The algorithm EXIT

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

See blackboard (or exercice sheet)

・ロト ・四ト ・ヨト ・ヨト

Root p₀

æ

< □ > < @ > < 注

Non-root p_i

æ

∢ ≣⇒

Image: A matrix and a matrix

Non-root p_i

● ▶ ● ●

Image: A matrix and a matrix

Non-root p_i

æ

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Non-root p_i

æ

∢ 臣 ▶

.

▲□▶ ▲圖▶ ▲ 厘▶

< ≣⇒

Non-root p_i

æ

- 1. The problem
- 2. The algorithm
- 3. Proof
 - a. Stability
 - b. Convergence
- 4. Conclusion

Step at process *p_i*

- sequence of instructions until the next access to some register (read or write)
- considered atomic here

Execution

- (infinite) interleaving of steps of processes
- · fairness assumption : every process takes infinitely many steps

Asynchronous round

 round 1 : smallest prefix in which each process takes at least one step. and so on

Asynchronous round

- round 1 : smallest prefix in which each process takes at least one step.
- round 2 : next segment in which each process takes at least one step and so on

Asynchronous round

- round 1 : smallest prefix in which each process takes at least one step.
- round 2 : next segment in which each process takes at least one step
- and so on

- 1. The problem
- 2. The algorithm
- 3. Proof
 - a. Stability
 - b. Convergence
- 4. Conclusion

Proof - Stability

Configuration

- for each p_i, values of local variables Ir_{mi}, F, dist
- register values r_{ij} for all p_i, p_j
- program counter : each process may not start at the beginning of the pseudo-code !

Proof - Stability

Legitimate configuration

- encodes a spanning tree rooted at p₀
- distance values in each r_{ij} is correct
- the parent p_i of p_i is the first process in N_i with minimal distance

Proof - Stability

- no process is inclined to change parent or distance
- the set of legitimate configurations is stable

- 1. The problem
- 2. The algorithm
- 3. Proof
 - a. Stability
 - b. Convergence
- 4. Conclusion

・ロト・日本・ ・ ヨト ・ ヨト

Strategy : from an arbitrary initial configuration

- Each register *r_{ij}* eventually holds the correct distance from the root to *p_i*
- Then, each process *p_i* selects the first valid parent in *N_i* ⇒ this yields a legitimate configuration

Strategy : from an arbitrary initial configuration

- Each register *r_{ij}* eventually holds the correct distance from the root to *p_i*
- Then, each process *p_i* selects the first valid parent in *N_i* ⇒ this yields a legitimate configuration

Lemma

Let Δ = max. nb of neighbours. In every 2 Δ successive rounds, each $p_i \neq p_0$ performs "one loop in the pseudo-code".

Definition

A *floating distance* in configuration *C* is a value in some field r_{ij} .*dis* that is smaller than the distance from the root to p_i .

Lemma

Let E_k be the suffix of execution after the first $\Delta + 4k\Delta$ rounds.

- (Small(k)) For any C ∈ E_k, if C has a floating distance, then the smallest floating distance in C is ≥ k
- (Dist(k)) For any C ∈ E_k, the distance values in registers of processes within distance k from the root are correct

By induction : E_1 after $\Delta + 4\Delta$ rounds (k = 1)

- each distance field is \geq 0 in the first (arbitrary) configuration
- Proc $p_i \neq p_0$
 - during the first 2Δ rounds, each non-root p_i computes dist : dist ≥ 1
 - in the next 2Δ rounds, each non-root p_i writes *dist* to its registers r_{ij}

 \Rightarrow afterwards, always $r_{ij} \ge 1$ for all *j*. In particular, Small(1) holds

By induction : E_1 after $\Delta + 4\Delta$ rounds (k = 1)

- each distance field is \geq 0 in the first (arbitrary) configuration
- root *p*₀
 - first Δ rounds : p₀ writes 0 in every r_{0j}
 - in the next 2Δ rounds, each root's neighbour p_j reads 0 in r_{0j}
 - in the next 2∆ rounds, each root's neighbour p_j writes 1 to their registers distance fields.
 - \Rightarrow Dist(1) holds

Assume Small(k) and Dist(k) hold in E_k .

- Let *C_k* first config of *E_k*
- $m \ge k$ smallest floating distance in C_k
- In the next 4∆ rounds after C_k, each proc that chooses m as the smallest value assigns m+1 to its distance
- Thus, afterwards, smallest floating distance $\geq m + 1 \geq k + 1$
- \Rightarrow Small(k+1) holds in E_{k+1}

Assume Small(k) and Dist(k) hold in E_k .

- Dist(k) holds in *E_k* : every proc within distance *k* from the root have registers with correct distance
- Let p_i be proc at distance k + 1
- In the next 4 Δ rounds after C_k : p_i necessarily chooses value k, and assigns k + 1 to its register distance fields.
- \Rightarrow Dist(k+1) holds in E_{k+1}

- 1. The problem
- 2. The algorithm
- 3. Proof
 - a. Stability
 - b. Convergence
- 4. Conclusion

・ロト・日本・ ・ ヨト ・ ヨト

Conclusion

Assumptions

- *n* processes, with a root *p*₀
- bidirectional communication with rw register r_{ij}
- each *p_i* knows a an ordered list of its neighbours
- each process takes infinitely many steps
- \Rightarrow the algorithm is self-stabilizing