
Self-stabilizing Spanning Tree

Peva BLANCHARD

1/30



• 1. The problem

• 2. The algorithm
• 3. Proof

• a. Stability
• b. Convergence

• 4. Conclusion

2/30



• 1. The problem

• 2. The algorithm
• 3. Proof

• a. Stability
• b. Convergence

• 4. Conclusion

3/30



Spanning-tree
Remember ?

4/30



Spanning-tree
Remember ?

4/30



Spanning-tree
Self-stabilizing

5/30



Spanning-tree
Self-stabilizing

5/30



Spanning-tree
Self-stabilizing

5/30



Model

• nodes = processes p0, . . . ,pn−1

• directed edge (pi ,pj) : atomic RW register rij

• pi writes to rij

• pi reads from rmi

6/30



Model

Assumptions

• p0 is a distinguished processor (root) and knows it

7/30



Model

Assumptions

• p0 is a distinguished processor (root) and knows it

• each pi knows an ordered list Ni of its neighbours

7/30



Model

Register rij

• boolean field parent :

pi points to pj ⇐⇒ rij .parent = 1

• integer field dist : distance from the root p0 to pi .

8/30



• 1. The problem

• 2. The algorithm
• 3. Proof

• a. Stability
• b. Convergence

• 4. Conclusion

9/30



The algorithm

10/30



The algorithm

10/30



The algorithm

10/30



The algorithm

10/30



The algorithm

10/30



The algorithm

10/30



The algorithm

10/30



The algorithm

See blackboard (or exercice sheet)

11/30



The algorithm

Root p0

12/30



The algorithm

Non-root pi

13/30



The algorithm

Non-root pi

13/30



The algorithm

Non-root pi

13/30



The algorithm

Non-root pi

13/30



The algorithm

Non-root pi

13/30



• 1. The problem

• 2. The algorithm
• 3. Proof

• a. Stability
• b. Convergence

• 4. Conclusion

14/30



Proof

Step at process pi

• sequence of instructions until the next access to some register
(read or write)

• considered atomic here

15/30



Proof

Execution

• (infinite) interleaving of steps of processes

• fairness assumption : every process takes infinitely many steps

16/30



Proof

Asynchronous round

• round 1 : smallest prefix in which each process takes at least one
step. and so on

17/30



Proof

Asynchronous round

• round 1 : smallest prefix in which each process takes at least one
step.

• round 2 : next segment in which each process takes at least one
step and so on

17/30



Proof

Asynchronous round

• round 1 : smallest prefix in which each process takes at least one
step.

• round 2 : next segment in which each process takes at least one
step

• and so on

17/30



• 1. The problem

• 2. The algorithm
• 3. Proof

• a. Stability
• b. Convergence

• 4. Conclusion

18/30



Proof - Stability

Configuration

• for each pi , values of local variables lrmi , F , dist

• register values rij for all pi ,pj

• program counter : each process may not start at the beginning of
the pseudo-code !

19/30



Proof - Stability

Legitimate configuration

• encodes a spanning tree rooted at p0

• distance values in each rij is correct

• the parent pj of pi is the first process in Ni with minimal distance

20/30



Proof - Stability

• no process is inclined to change parent or distance

• the set of legitimate configurations is stable

21/30



• 1. The problem

• 2. The algorithm
• 3. Proof

• a. Stability
• b. Convergence

• 4. Conclusion

22/30



Proof - Convergence

Strategy : from an arbitrary initial configuration

• Each register rij eventually holds the correct distance from the
root to pi

• Then, each process pi selects the first valid parent in Ni ⇒ this
yields a legitimate configuration

23/30



Proof - Convergence

Strategy : from an arbitrary initial configuration

• Each register rij eventually holds the correct distance from the
root to pi

• Then, each process pi selects the first valid parent in Ni ⇒ this
yields a legitimate configuration

23/30



Proof - Convergence

Lemma
Let ∆ = max. nb of neighbours. In every 2∆ successive rounds, each
pi 6= p0 performs “one loop in the pseudo-code”.

24/30



Proof - Convergence

Definition
A floating distance in configuration C is a value in some field rij .dis that
is smaller than the distance from the root to pi .

25/30



Proof - Convergence

Lemma
Let Ek be the suffix of execution after the first ∆ + 4k∆ rounds.

• (Small(k)) For any C ∈ Ek , if C has a floating distance, then the
smallest floating distance in C is ≥ k

• (Dist(k)) For any C ∈ Ek , the distance values in registers of
processes within distance k from the root are correct

26/30



Proof - Convergence

By induction : E1 after ∆ + 4∆ rounds (k = 1)

• each distance field is ≥ 0 in the first (arbitrary) configuration
• Proc pi 6= p0

• during the first 2∆ rounds, each non-root pi computes dist :
dist ≥ 1

• in the next 2∆ rounds, each non-root pi writes dist to its registers
rij

⇒ afterwards, always rij ≥ 1 for all j . In particular, Small(1) holds

27/30



Proof - Convergence

By induction : E1 after ∆ + 4∆ rounds (k = 1)

• each distance field is ≥ 0 in the first (arbitrary) configuration
• root p0

• first ∆ rounds : p0 writes 0 in every r0j
• in the next 2∆ rounds, each root’s neighbour pj reads 0 in r0j
• in the next 2∆ rounds, each root’s neighbour pj writes 1 to their

registers distance fields.

⇒ Dist(1) holds

27/30



Proof - Convergence

Assume Small(k) and Dist(k) hold in Ek .

• Let Ck first config of Ek

• m ≥ k smallest floating distance in Ck

• In the next 4∆ rounds after Ck , each proc that chooses m as the
smallest value assigns m + 1 to its distance

• Thus, afterwards, smallest floating distance ≥m + 1≥ k + 1

⇒ Small(k+1) holds in Ek+1

28/30



Proof - Convergence

Assume Small(k) and Dist(k) hold in Ek .

• Dist(k) holds in Ek : every proc within distance k from the root
have registers with correct distance

• Let pi be proc at distance k + 1

• In the next 4∆ rounds after Ck : pi necessarily chooses value k ,
and assigns k + 1 to its register distance fields.

⇒ Dist(k+1) holds in Ek+1

28/30



• 1. The problem

• 2. The algorithm
• 3. Proof

• a. Stability
• b. Convergence

• 4. Conclusion

29/30



Conclusion

Assumptions

• n processes, with a root p0

• bidirectional communication with rw register rij

• each pi knows a an ordered list of its neighbours

• each process takes infinitely many steps

⇒ the algorithm is self-stabilizing

30/30


