Beyond Blockchains

Adi Seredinschi

INformal

SYSTEMS

Distributed Algorithms // EPFL Fall’20

My Team

Vienna

Lausanne (Innovation Park)
Berlin

Toronto

Belgrade

Paris

Verifiable distributed

systems 4nd organizations.

We envision an open-source ecosystem of cooperatively owned and governed
distributed organizations running on reliable distributed systems.

what we do
Systems (of Machines) Organizations (of Humans)
Informal designs, implements, and Informal develops tools to simplify
formally verifies distributed systems the operation of organizations by
and protocols, including blockchain leveraging open-source
systems like Tendermint and Cosmos. development, plaintext data, and

distributed version control systems.

1. Blockchains & BFT Consensus
Tendermint Core %

Beyond Blockchains
Inter-Blockchain Communication
(IBC)

consensus Vvs.
Blockchain

Application

Consensus Algorithm

Networking (links,
broadcast)

=
©
<
O
X
3]
L=
(a8

JUIwLIBdpua |

(aka Replicated State Machine)

Consensus: “processes propose values and have to agree
on one among these values”

Models:

o Benign: crash-stop processes (P, <>P algorithms)
o Today: Byzantine processes

m e.g., buggy, malicious & adversarial, rational

m Authenticated links (dig. sigs. assumption)

Blockchain

e Can mean different things
e Often, the whole stack is the “blockchain”

e Builds on a consensus core -> total order
o Multiple instances of consensus
e Also known as: Replicated State Machine

Basic Tendermint BEFT Consensus

Properties

Validity Predicate-based Byzantine Consensus (Crain et al, 2017)

1. Validity: A decided value is valid, i.e., it satisfies a predicate valid().
2. Agreement: No two correct processes decide differently.

3. Termination: All correct processes eventually decide on a value.
4,

Integrity: No correct process decides more than once (w.r.t. a consensus instance).

http://arxiv.org/abs/1807.04938

Tendermint Algorithm Overview

e Similar in spirit to Consensus algorithm Il

€

e We assume a correct “majority”: Consensus algorithm III

o >?%sprocesses are correct (quorums) _ _ _
* A uniform consensus algorithm assuming:

o < Ysprocesses may be Byzantine * a correct majority
o N=3f+1 ® a <>P failure detector
e Processes take turns in the role of proposer © > processes are correct
o N=2f+1

o Round-based model
o Benign (non-Byzantine case)

o Eachround has a predefined proposer

o Goal: proposer locks everyone on a value

https://arxiv.org/pdf/1807.04938.pdf

System model

e Partially synchronous system model (DLS88)

o Communication between correct processes is reliable and timely (bounded with Delta) after
GST

e At most f processes can be faulty (Byzantine faults)

e (ossip communication:

o If a correct process receives a message m at time t, all correct processes will receive m before
max(t, GST) + Delta

Communication is asynchronous Communication is timely

and unreliable | and reliable

| ot
GST (Global Stabilization Time)

Round

i}

e Proposal, Prevote, Precommit -> decision
e Has a predefined proposer process

(Round 0L Round 1 s

Consensus instance 1 Locking

f e Locked values means PRECOMMIT was sent

Round 0 Sl N - ound 2 e Two variables keep track of the last locked value:

O
. . m Retains the value itself; initially nil
Consensus instance (height) 0 o lockedRound
' m Initially -1

Proposal -> Prevote -> Precommit

New Height

Valid block

+2/3
precommit for

+2/3 prevote
for block

(good case)

New Height

Propose —_r—
4 Valid block
Outdated or \
late ¥

Prevote Nil Prevote Block

A

+2/3

\

| no+2/3
\precommit for
\

precommit for

no +2/3 prevote
for block

Precommit Nil

+2/3 prevote
for block

Precommit Block

(complete)

Tendermint consensus

o lockedValue = nil
algorithm IckedRound - -1
validValue = nil
validRound = -1
step = Propose
P1’s round

P,

///; <PROPOSAL, r, Vv, vr>
1

.<PREVOTE, r, id(

<PRECOMMIT, r, id(

AN

% M

Novelties

Gossip layer (instead of all-to-all links)

Light client (e.g., a mobile phone)

Robustness (Jepsen tests)

ABCI - interface b/t consensus and application layer

A WON =

Open Challenges

1. Rust implementation

(Focus on correctness: Model-based testing, Mocking)
2. Formal verification

(TLA+, Stainless, Prusti, Isabelle)
3. Inter-blockchain Communication — IBC

https://github.com/tendermint/tendermint/blob/master/docs/spec/consensus/light-client.md
https://jepsen.io/analyses/tendermint-0-10-2
https://github.com/tendermint/tendermint/tree/master/docs/spec/abci
https://github.com/cosmos/ics

Roadmap 1. Blockchains & BFT Consensus
Tendermint Core %

Beyond Blockchains
Inter-Blockchain Communication

(IBC)
Quick Overview

IBC: Problem statement

A

CREDIT SUISSE“ (. . &E UBS
1. WHAT is communicated?
Application: Application:
Token Transfer 2. WHO communicates? Token Transfer
3. HOW to perform the I
Consensus Algorithm communication? Consensus Algorithm
Networking (links, Networking (links,
broadcast) broadcast)

1. What is communicated?

Application:
Token Transfer

Consensus
Algorithm

Networking (links,
broadcast)

(Australian Open Ledger)

Y

Balances:
_Alice: 10
_Bob: 20

What is communicated?

Application: > Application:
Token Transfer

Token Transfer

Consensus
Algorithm

Consensus
Algorithm

Networking (links,
broadcast)

Networking (links,
broadcast)

CREDITSUISSE & UBS

2. Who communicates?

Application: it o el
Token Transfer - -, g

MILLION ST

Consensus
Algorithm

.6 MILLION S0 FT
-| $1.2 BILLION

Networking (links,
broadcast)

Recall that this is afLALHEHE

replicated state machine

https://hostingfacts.com/where-website-live/

2. Who communicates?

Application:
Token Transfer

Consensus
Algorithm

Networking (links,
broadcast)

This is not

efficient...

Application:
Token Transfer

I

Consensus
Algorithm

Networking (links,
broadcast)

2. Who communicates?

Application:
Token Transfer

Consensus

IBC
Algorithm Relayer
Networking (links,
broadcast)
o) \/o\—o
\o 9. B read/write
o/—o/o—\o> %/
Ny \

Application:
Token Transfer

I

Consensus
Algorithm

Networking (links,
broadcast)

read/write

3. How?
Analogy with TCP/IP

Ethernet

<€

Physical connection

>

Ethernet

3. How? Assuming no Byzantine faults

L O—— 0 —0O
P / e
O—0O0—0 \ o
o/ s cé/ O Read state ‘)
I from node Write
G paco 0 S
packet node all nodes

Write into
E store

Read state
from node

Student Projects

e AT2 ~ implementation of consensus-less payments

e IBC ~ a “TCP/IP” for interconnecting ledgers

e Rust ~ Implementation of Tendermint modules (consensus, mempool, fast sync) using Prusti and Rust.
e Stainless ~ Implementation of Tendermint modules (consensus, mempool) using Stainless and Scala.
e Facebook Libra ~ comparative analysis of consensus algorithms.

e Mempool (performance analysis); adversarial engineering.

Complete list:
https://dcl.epfl.ch/site/education#collaborative_projects

Thank you!

adi@informal.systems

https://dcl.epfl.ch/site/education%23collaborative_projects

