A Solution to Exercise 5

Concurrent Algorithms 2013
LPD, EPFL



Exercises 1.a and 1.b

The solution was given in the lecture on the
limitations of registers.



Exercise 1.c

The consensus number of the queue object is 2

1. One can implement consensus between 2
processes using only queues and atomic
registers (done in class).

2. One cannot implement consensus between
3 processes using only queues and atomic
registers.



Exercise 1.c

We want to prove:

Binary consensus between 3 processes is impossible using
only queues and registers.

|dea: proof by contradiction; we assume we have a
consensus algorithm between three processes p1, p2 and p3,
and show this leads to contradictions.

Essentially, we will show that there is at least one bivalent
initial configuration, and that for any bivalent configuration
there is a schedule that leads to another bivalent
configuration, hence contradicting the hypothesis.



Exercise 1.c

(Lemma 1): There exists an initial bivalent configuration in a
system of 3 processes using queues and atomic registers.

Proof (as in the lecture):
We show the initial configuration C(0,1,1) is bivalent:

Consider C(0,0,0) and p2 and p3 not taking any steps: p1 decides
0; p1 cannot distinguish C(0,0,0) from C(0,1,1) and can hence
decides O starting from C(0,1,1); similarly, if we consider C(1,1,1)
and p1 and p3 not taking any step, p2 eventually decides 1; p2
cannot distinguish C(1,1,1) from C(0,1,1) and can hence decides
1 starting from C(0,1,1). Hence the bivalency.



Exercise 1.c

(Lemma 2): If C; and C; are indistinguishable to process p,, then
they must have the same valency.

! C, C, — indistinguishable to process p,: the states of the shared
objects are the same in C;and C;, and the state of p, is the same

Proof:

Assume p, performs schedule s from C. and decides v; if we
apply s to C;, the state of the shared objects and p, in s(C)
and s(C,) are the same. Therefore p, should decide the
same value in s(C)).



Exercise 1.c

(Lemma 3): For any bivalent configuration there is an arbitrary long
schedule which leads to another bivalent configuration.

Proof: Assume there is no such schedule, show contradiction.

C.... — initial bivalent configuration;
C - bivalent configuration s.t. for any s, s(C) is univalent;

e,, e,, €; —single steps performed by processes p,, p,, p; respectively

e,(C), e,(C), e5(C) — univalent, but not all have the same valency
(since C - bivalent); assume e,(C) is 0-valent, e,(C) is 1-valent;



Exercise 1.c

Proof (cont’d):

We analyze el and e2. Assume they access the same object
(otherwise el(e2(C)) = e2(e1(C))). If they access a register, use the
arguments in the FLP proof to reach the conclusion. Therefore, we
assume they access a queue.

Case 1: el, e2 — both dequeues:

el(e2(C)), e2(e1(C)) — indistinguishable to p3 => same valency (per
Lemma 2); contradiction.
Case 2: el —dequeue, e2 — enqueue;

if Q — not empty in C, then el(e2(C)) and e2(e1(C)) —
indistinguishable to p3 => same valency; contradiction.

if Q —empty in C, e2(C) and e2(e1(C)) — indistinguishable to p3 =>
same valency (Lemma 2); contradiction.



Exercise 1.c

Proof (cont’d):
Case 3: el, e2 — enqueues;
Let a,b — the values enqueued by p1 and p2 respectively

The processes must run until they dequeue a or b, otherwise they cannot
distinguish between e1(C) and e2(C).

Execution s1(C): Execution s2(C):

1. p1 and p2 enqueue a and b in that 1. p2 and pl1 enqueue b and a in that
order order

2. pl runs until it dequeues a 2. pl runs until it dequeues b

3. p2 runs until it dequeues b 3. p2 runs until it dequeues a

0 — valent (since e1(C) — O-valent) 1 —valent (since e2(C) — 1-valent)

pl’s executions — identical until it dequeues a or b; no modifications afterwards;
p2’s executions — identical until it dequeues a or b; no modifications afterwards;

=>s1(C) and s2(C) identical to p3, hence same valency (Lemma 2) => contradiction.



Exercise 1.c

Assume there is an algorithm implementing consensus between 3
processes using queues and atomic registers.

(Lemma 1): There exists an initial bivalent configuration in a
system of 3 processes using queues and atomic registers.

(Lemma 2): If C; and C, are indistinguishable to process p,, then
they must have the same valency.

(Lemma 3): For any bivalent configuration there is an arbitrary
long schedule which leads to another bivalent configuration.

Lemmas 1, 3 => contradiction with the hypothesis

There is no wait-free implementation of a consensus object

using queues and registers in a systems of 3 processes.



Exercise 1.c

Complete solution on the website, also see [Herlihy,

M. P. Wait-free synchronization. ACM Transactions

on Programming Languages and Systems, 13(1):124
—149, January 1991].



Exercise 2

2 process consensus using only uninitialized

gueues and atomic registers

* Shared objects: a queue Q, atomic register R,
array of atomic registers Input|2]

* Q- initially empty;
 P1insertsin the queue Q, P2 writes to R;



Exercise 2

Process 1:

propose, (val,) :

Input[l] := valy;
Q.enqueue (lose) ;
i1f R.read() = 1 then

1f Q.dequeue ()= empty then return Input[l];
else return Input[2];
else return Input[l];

Process 2:

propose, (val,) :
Input[2] := val,;
R := 1;
if Q.dequeue() = empty then return Input([2];
else return Input[l];



