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                         Outline

-  Self-stabilizing coloring
-  Self-stabilizing pulse
-  Break
-  Self-stabilizing broadcast (blackboard)



  

Self-stabilizing coloring



  

Context

-  A graph of degree D
(D = max number of neighbors per node)

-  D + 1 "colors" {1,2,...,D}

-  Each node p has a color C(p)      {1,2,...,D}



  

Node coloring problem

Initially, the nodes have any colors:



  

Eventually, we must satisfy the
following property:

For any two neighbor nodes p and q,
C(p) ≠ C(q)

(the graph is "well colored")



  

Example of "well colored" graph:



  

Model

-  Each node is eventually "activated"

-  When a node is "activated", it can 
   execute a given algorithm

-  Two neighbor nodes are never 
   activated at the same time



  

Algorithm

When a node p is activated :

- Let N(p) be the set of neighbors of p
- Let C be a color such that :
 

→ Then, C(p) := C

( Such a color C always exists because:
   - p has at most D neighbors
   - we have D+1 colors    )



  

Our goal

Prove that, with this algorithm,
the graph is always eventually
"well colored",
AND remains "well colored"

( In other words, the coloring of the 
graph is self-stabilizing, because it 
works for any initial coloring )



  

Definition

A node p is "well colored" if:

→  If all nodes are "well colored",
      then the graph is "well colored"



  

Lemma 1 (Liveness property)

Let p be a node that is
"not well colored".

Then, p is eventually "well colored".



  

Proof

- p is eventually activated

- When p is activated, no neighbor of p 
  is activated in the same time

- Then, p executes the algorithm, and 
  takes a color different from its neighbors

- Then, p becomes "well colored"



  

Lemma 2 (Safety property)

If p is "well colored", then p always 
remains "well colored".



  

Proof

The proof is by contradiction:

- We suppose the opposite

- We show that this leads
  to a contradiction



  

Suppose the opposite: a node p
is "well colored", then, after a
certain time, p is "not well colored".

→  Changes only happen when nodes are 
activated.
Therefore, consider the activation where p 
goes from "well colored"
to "not well colored".

→  2 cases (mutually exclusive) :
      -  p is activated
      -  at least one neighbor of p is activated



  

Case 1: p is activated

By hypothesis, no neighbor of p is 
activated at the same time.

Then, it implies that p takes the same 
color as one of its neighbors.
→  contradiction with the algorithm!



  

Case 2: at least one neighbor
q of p is activated

By hypothesis, p is not activated at the 
same time.

Then, it implies that q takes the same 
color as p.
→  contradiction with the algorithm!



  

Liveness property:
A node "not well colored" eventually
becomes "well colored".

Safety property:
A node "well colored" always remains
"well colored".

→ Each node is eventually "well colored",
    and remains "well colored"

→ The graph is eventually "well colored", 
    and remains "well colored"



  

We proved that this (simple) algorithm
is self-stabilizing for the
node coloring problem.



  

Self-stabilizing pulse



  

Clapping



  

Fireflies



  

Problem



  

                            Model

-  Discrete time
-  n processes
-  At any time, each process can "beep"
-  All processes know T (the desired period)



  

Beep(t) = 1
if at least one process beeps at time t

...and 0 otherwise



  

                       Algorithm

For each process at time t:

If                                                        ,

Beep(t') = 0

...then, beep.
Otherwise, do not beep.



  

Lemma 1

 Eventually, at least one process beeps.



  

                        Proof

Let t be any time.

- If one process beeps at a time
  { t, t+1, … , t+T-1 }  →  WIN!

- Otherwise, according to the algorithm,
  all processes beep at t+T → WIN!



  

                     Lemma 2

If at least one process beeps at time t,
then all processes beep at time t+T
(…and do not beep between t and t+T)



  

                        Proof

-  At time {t+1, t+2, ...., t+T-1},
   according to the algorithm,
   no one beeps.

- Therefore, at time t+T,
  according to the algorithm,
  everybody beeps.



  

                        Synthesis

-  Eventually, someone beeps at some time t
-  Then, everybody beeps at  t + T.
-  Therefore, by induction, everyone beeps at
    t+2T,  t+3T,  t+4T, …

→  Synchronous beeping



  


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33

