
1

© R. Guerraoui 1

Computing with
anonymous processes

Prof R. Guerraoui
Distributed Programming Laboratory

2

Counter (sequential spec)
A counter has two operations inc() and
read() and maintains an integer x init to 0

read():
return(x)

inc():
x := x + 1;
return(ok)

3

The processes share an array of SWMR
registers Reg[1,..,n] ; the writer of register
Reg[i] is pi

inc():
temp := Reg[i].read() + 1;
Reg[i].write(temp);
return(ok)

Counter (atomic implementation)

4

read():
sum := 0;
for j = 1 to n do

sum := sum + Reg[j].read();
return(sum)

Counter (atomic implementation)

5

Weak Counter

A weak counter has one operation wInc()
wInc():

x := x + 1;
return(x)

• correctness: if an operation precedes
another, then the second returns a value that
is larger than the first one (regularity vs
atomicity)

6

Weak counter execution

p1

p2

p3

wInc() - 1

wInc() - 2

wInc() - 2

2

7

The processes share an (infinite) array of
MWMR registers Reg[1,..,n,..,], init to 0
wInc():

i := 0;
while (Reg[i].read()≠ 0) do

i := i + 1;
Reg[i].write(1);
return(i);

Weak Counter
(lock-free implementation)

8

Weak counter execution

p1

p2

p3

wInc() - 1 wInc() - 2 wInc() -

wInc() -

9

The processes also use a MWMR register L
wInc():

i : = 0;
while (Reg[i].read()≠ 0) do

if L has been updated n times then
return the largest value seen in L

i := i + 1;
L.write(i);
Reg[i].write(1);
return(i);

Weak Counter
(wait-free implementation)

10

wInc():
t:= l := L.read(); i := 0;
while (Reg[i].read()≠ 0) do

if L.read() ≠ l then
l := L.read(); t := max(t,l); i := i+1;
if k = n then return(t)

L.write(i);
Reg[i].write(1);
return(i);

Weak Counter
(wait-free implementation)

11

Snapshot (sequential spec)
A snapshot has operations update() and
scan() and maintains an array x of size n
scan():

return(x)
NB. No component is devoted to a process
update(i,v):

x[i] := v;
return(ok)

12

Key idea for atomicity
& wait-freedom

The processes share a Weak Counter:
Wcounter, init to 0;
The processes share an array of registers
Reg[1,..,N] that contains each:

a value,
a timestamp, and
a copy of the entire array of values

3

13

Key idea for atomicity
& wait-freedom (cont’d)

To scan, a process keeps collecting and
returns a collect if it did not change, or some
collect returned by a concurrent scan

Timestamps are used to check if a scan
has been taken in the meantime

• To update, a process scans and writes the
value, the new timestamp and the result of
the scan

14

Snapshot implementation
Every process keeps a local timestamp ts

update(i,v):
ts := Wcounter.wInc();
Reg[i].write(v,ts,self.scan());
return(ok)

15

Snapshot implementation

scan():
ts := Wcounter.wInc();
while(true) do

If some Reg[j] contains a collect with a
higher timestamp than ts, then return
that collect
If n+1 sets of reads return identical
results then return that one

16

Consensus (obstruction-free)
We consider binary consensus

The processes share two infinite arrays of
registers: Reg0[i] and Reg1[i]

Every process holds an integer i init to 1

Idea: to impose a value v, a process needs to
be fast enough to fill in registers Regv[i]

17

Consensus (obstruction-free)

propose(v):
while(true) do

If Reg1-v[i] = 0 then
Regv[i] := 1;
if i > 1 and Reg1-v[i-1]= 0 then

return(v);
else v:= 1-v;
i := i+1;

end
18

Consensus (solo process)

q(1)

Reg1(1):=1

Reg0(1)=0

Reg0(2)=0

Reg1(2):=1

Reg0(1)=0

4

19

Consensus (lock-step)
q(1)

Reg1(1):=1

Reg0(1)=0

Reg0(2)=0

Reg1(2):=1

Reg0(1)=1

p(0)

Reg0(1):=1

Reg1(1)=0

Reg1(2)=0

Reg0(2):=1

Reg0(1)=1

20

Consensus (binary)

propose(v):
while(true) do

If Reg1-v[i] = 0 then
Regv[i] := 1;
if i > 1 and Reg1-v[i-1]= 0 then

return(v);
else if Regv[i] = 0 then v:= 1-v;
if v = 1 then wait(2i)
i := i+1;

end

