
A Solution for the Exercise 5

Michał Kapałka

EPFL, LPD

STiDC’06, 12.XII 2006

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 1 / 10



The aim of the exercise

We have:
An obstruction-free algorithm A – implementation of a shared
object O
Failure detector ♦P

We want:
A wait-free implementation of shared object O

We need:
A contention manager that transforms any obstruction-free
algorithm into a wait-free one

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 2 / 10



The big picture

Wait-free implementation B of shared object O

Obstruction-free
algorithm A

Contention manager

Failure detector ♦P

try/resign

suspected

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 3 / 10



Obstruction-freedom

Obstruction-freedom = progress only in the absence of contention
⇒conditional progress
Weaker than wait-freedom

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 4 / 10



Why obstruction-freedom?

Easier to implement and optimize than wait-freedom – separation
of concerns:

Obstruction-free algorithm = safety + weak liveness
Contention manager = stronger liveness

Contention managers can provide wait-freedom or can use simple
heuristics (e.g., exponential back-off)
Contention managers can be tuned to particular system /
application and combined – safety always preserved

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 5 / 10



Assumptions

Algorithm A must communicate with a contention manager⇒calls try
and resign:

tryi is called always before an operation starts, and possibly many
times within the operation,
resigni is called only immediately before the operation returns,
If a process pi is correct but never returns from an operation then
pi calls tryi infinitely many times.

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 6 / 10



Failure detector ♦P

An eventually perfect failure detector ♦P maintains, at every process
pi , a set suspectedi of suspected processes. ♦P guarantees that
eventually, after some unknown time, the following conditions are
satisfied:

1 Every correct process permanently suspects every crashed
process,

2 No correct process is ever suspected by any correct process.

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 7 / 10



A first approach

uses: T [1, . . . , n]—array of single-bit registers
initially: T [1, . . . , n]← false

upon tryi do
T [i]← true
repeat

leaderi = the non-suspected process with T [leaderi ] = true
with the lowest process id

until leaderi = pi

upon resigni do
T [i]← false

Not wait-free – possible starvation (in fact: lock-free)

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 8 / 10



A first approach

uses: T [1, . . . , n]—array of single-bit registers
initially: T [1, . . . , n]← false

upon tryi do
T [i]← true
repeat

leaderi = the non-suspected process with T [leaderi ] = true
with the lowest process id

until leaderi = pi

upon resigni do
T [i]← false

Not wait-free – possible starvation (in fact: lock-free)

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 8 / 10



A wait-free contention manager

uses: T [1, . . . , N]—array of registers
initially: T [1, . . . , N]← ⊥

upon tryi do
if T [i] = ⊥ then T [i]← GetTimestamp()
repeat

sacti ← {pj | T [j] 6= ⊥ ∧ pj /∈ ♦P.suspectedi }
leaderi ← the process in sacti with the lowest
timestamp T [leaderi ]

until leaderi = pi

upon resigni do
T [i]← ⊥

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 9 / 10



Properties of GetTimestamp()

Timestamps have to be unique
They should also be increasing, but atomicity not necessary
A solution (implemented with registers): combine a value returned
by a weak counter with process id

Michał Kapałka (EPFL, LPD) Ex.5 Solution STiDC’06, 12.XII 2006 10 / 10


