
STiDC’06: Example Final Exam Questions

February 7, 2007

Problem 1

Implement a multi-valued SWMR safe register, using a minimal number of base multi-valued SWMR
safe registers of which b can be malicious, i.e., can return arbitrary values.

Solution. The idea of the solution is the following. We use 2b + 1 base safe registers. A write operation
writes to all base registers the same value given as an argument. A read operation reads from all base
registers, and returns the value read from a majority of them. If there is no value that is read from a
majority of base registers, the read operation can return any value.

Problem 2

We can define an UpDownCounter object as follows. The state of the object stores an integer. The object
implements 3 operations: read returns the state of the object without changing it, inc increases the state
of the object by 1 and returns ok, and dec decreases the state of the object by 1 and returns ok.

1. Here is a proposed implementation of an UpDownCounter for n processes, using n atomic registers
(code for process pi):

uses: A[1, . . . , n] – atomic registers
initially: A[1, . . . , n] = 0

upon readi() do
v← 0
for k← 1 to n do

v← v + A[k].readi()
return v

upon inci() do
v← A[i].readi()
A[i].writei(v + 1)

upon deci() do
v← A[i].readi()
A[i].writei(v− 1)

Is this a linearizable implementation of an UpDownCounter? If so, prove it. If not, give an execution
that is not linearizable.

2. What is the consensus number of UpDownCounter? Show your answer is correct.

1



Solution for part 1. The algorithm is not a linearizable implementation of an UpDownCounter. To prove
it, consider the following execution of the algorithm:

Step Process p1 Process p2 Process p3

1. invokes read1()
2. reads A[1] = 0
3. reads A[2] = 0
4. invokes inc2()
5. writes A[2]← 1
6. returns ok
7. invokes dec3()
8. writes A[3]← −1
9. returns ok
10. reads A[3] = −1
11. returns −1

The execution is not linearizable because the operations inc2() and dec3() are not concurrent, and so the
operation read1() should have returned either 0 or 1. However, read1() returns −1.

Solution for part 2. The consensus number of UpDownCounter is 1. That is because UpDownCounter
can be easily implemented from an atomic snapshot object, which can be implemented from registers
(see the lecture slides). The algorithm would be the following:

uses: S – atomic snapshot (other variables are local)
initially: ci = 0 at every process pi, and the value of each element of S is 0

upon readi() do
A← S.scani()
v← 0
for k← 1 to n do

v← v + A[k]
return v

upon inci() do
ci ← ci + 1
S.updatei(ci)

upon deci() do
ci ← ci − 1
S.updatei(ci)

Problem 3

Implement a stack using 2-consensus objects and atomic registers in a system of n processes. (Reminder:
2-consensus is an implementation of consensus for 2 processes.)

Solution. See the paper Common2 extended to stacks and unbounded concurrency by Y. Afek, E. Gafni and
A. Morrison (PODC’06).

2


