
1

© R. Guerraoui 1

Object implementations out of
faulty base objects

Prof R. Guerraoui
Distributed Programming Laboratory

2

Failure modes

Responsive: once ⊥, forever ⊥
Non-responsive: no reply

NB. In the asynchronous model, it is impossible
to distinguish a non-responsive failed object
from a slow object

3

Register implementations

Algorithm 1: implements a SWMR register
out of t+1 SWMR base responsive failure-
prone registers
Algorithm 2: implements a SWSR register
out of 2t+1 SWSR base non-responsive
failure-prone registers
Algorithm 3: implements a C&S object out of
t+1 base responsive failure-prone C&S

4

Responsive model
Write(v)

For j = 1 to (t+1) do
Reg[j].write(v);

return(ok)

Read()
For j = t+1 to 1 do

v := Reg[j].read();
if v ≠ ⊥ then return(v)

5

Non-responsive model
Init: seq := 1

Write(v)
w_seq := w_seq + 1;
For j = 1 to (2t+1) do l l:

Reg[j].write(w_seq, v);
« wait until a majority of oks are returned »
return(ok)

6

Non-responsive model
Init: (sn,val) := (-1,⊥);

Read()
For j = 1 to (2t+1) do l l:

(s,v) := Reg[j].read();
(sn,val) := (s,v) with the highest s from
majority, including (sn,val)
return (val)

2

7

Responsive model
(single-shot compare&swap)

C&S(v)
r := v;
for j = 1 to t+1 do

r' := CS[j].C&S(r);
if r' ≠ ⊥ then r := r’;

return(r)

8

Exercises

(1) Is it possible to build a C&S with base
C&S objects among which one can be non-
responsive?

(2) Build a SWMR register that tolerates t
non-responsive base SWMR registers

