
© R. Guerraoui 1

Shared Memory Algorithms
(Overview)

Prof R. Guerraoui

Assistant M. Kapalka
Distributed Programming Laboratory

2

In short

 This course introduces a theory of
robust concurrent computing

3

 Major chip manufacturers have recently
announced what is perceived as a
major paradigm shift in computing:

Multiprocessors vs faster processors

May be Moore was wrong…

4

 The clock speed of a processor
cannot be increased without
overheating

But

More and more processors can fit in
the same space

5

 Speed will be achieved by having
several processors work on
independent parts of a task

But

the processors would occasionally
need to pause and synchronize

6

 Why synchronize?

But

If the task is indeed common, then
pure parallelism is usually
impossible and, at best, inefficient

7

Shared object

Concurrent processes

8

Concurrent computing for
the masses

• Forking processes might become more
frequent

• But

• Concurrent accesses to shared objects
might become more problematic

9

Locking (mutual exclusion)

• Difficult: 50% of the bugs reported in
Java come from the use of
« synchronized »

• Fragile: a process holding a lock
prevents all others from progressing

10

Locked object

One process at a time

11

Processes are asynchronous

• Page faults, pre-emptions, failures,
cache misses, …

• A process can be delayed by millions of
instructions …

12

Alternative to locking?

13

Wait-free atomic objects

• Wait-freedom: every process that
invokes an operation eventually returns
from the invocation (robust … unlike
locking)

• Atomicity: every operation appears to
execute instantaneously (as if the object
was locked…)

14

In short

 This course shows how to

 wait-free implement high-level

 atomic objects out of more

 primitive base objects

15Shared object

Concurrent processes

16

This course

• Theoretical

• No specific theoretic background

• Written exam on Feb 6th

17

Roadmap

Model

 Processes and objects

 Atomicity and wait-freedom

Examples

Content

18

Processes

 We assume a finite set of processes

 Processes are denoted by p1,..pN or p, q, r

 Processes have unique identities and know
each other (unless explicitely stated
otherwise)

19

Processes

• Processes are sequential units of
computations

• Unless explicitely stated otherwise, we
make no assumption on process
(relative) speed

20

Processes

p1

p2

p3

21

Processes
A process either executes the algorithm
assigned to it or crashes

A process that crashes does not
recover (in the context of the
considered computation)

A process that does not crash in a
given execution (computation or run) is
called correct (in that execution)

22

Processes

p1

p2

p3

crash

23

On objects and processes

Processes execute local computation or
access shared objects through their
operations

Every operation is expected to return a
reply

24

Processes

p1

p2

p3

operation

operation

operation

25

On objects and processes
• Sequentiality means here that, after

invoking an operation op1 on some
object O1, a process does not invoke a
new operation (on the same or on some
other object) until it receives the reply
for op1

• Remark. Sometimes we talk about
operations when we should be talking
about operation invocations

26

Processes

p1

p2

p3

operation

operation

operation

27

Atomicity
We mainly focus in this course on how
to implement atomic objects

Atomicity means that every operation
appears to execute at some indivisible
point in time (called linearization point)
between the invocation and reply time
events

28

Atomicity

p1

p2

p3

operation

operation

operation

29

Atomicity

p1

p2

p3

operation

operation

operation

30

Wait-freedom
We mainly focus in this course on wait-
free implementations

An implementation is wait-free if any
correct process that invokes an
operation eventually gets a reply, no
matter what happens to the other
processes (crash or very slow)

31

Wait-freedom

p1

p2

p3

operation

32

Wait-freedom
Wait-freedom conveys the robustness
of the implementation

With a wait-free implementation, a
process gets replies despite the crash
of the n-1 other processes

Note that this precludes
implementations based on locks
(mutual exclusion)

33

Wait-freedom

p1

p2

p3

crash

operation

crash

34

Roadmap

Model

 Processes and objects

 Atomicity and wait-freedom

Examples

Content

35

Most synchronization primitives
(problems) can be precisely expressed
as atomic objects (implementations)

Studying how to ensure robust
synchronization boils down to studying
wait-free atomic object implementations

Motivation

36

Example 1

The reader/writer synchronization
problem corresponds to the register
object

Basically, the processes need to read
or write a shared data structure such
that the value read by a process at a
time t, is the last value written before t

37

Register

A register has two operations: read()
and write()

We assume that a register contains an
integer for presentation simplicity, i.e.,
the value stored in the register is an
integer, denoted by x (initially 0)

38

Sequential specification

Sequential specification

 read()

 return(x)

 write(v)

 x <- v;

 return(ok)

39

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 2

 write(2) - ok

40

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 2

 write(2) - ok

41

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 write(2) - ok

42

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 write(2) - ok

43

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 1

44

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

45

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

46

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

47

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 0

 read() - 0

48

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 0

49

Atomicity?

p1

p2

p3

 write(1) - ok

read() - 1

 read() - 1

50

Example 2

The producer/consumer synchronization
problem corresponds to the queue object

Producer processes create items that
need to be used by consumer processes

An item cannot be consumed by two
processes and the first item produced is
the first consumed

51

Queue

A queue has two operations: enqueue()
and dequeue()

We assume that a queue internally
maintains a list x which exports operation
appends() to put an item at the end of the
list and remove() to remove an element
from the head of the list

52

Sequential specification

dequeue()

 if(x=0) then return(nil);

 else return(x.remove())

enqueue(v)

 x.append(v);

 return(ok)

53

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 deq() - x

 enq(y) - ok

54

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 deq() - x

 enq(y) - ok

55

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 enq(y) - ok

56

Atomicity?

p1

p2

p3

 enq(x) - ok

deq() - y

 enq(y) - ok

57

Roadmap

Model

 Processes and objects

 Atomicity and wait-freedom

Examples

Content

58

Content

• (1) Implementing registers

• (2) The power & limitation of registers

• (3) Universal objects & synchronization number

• (4) The power of time & failure detection

• (5) Tolerating failure prone objects

• (6) Anonymous implementations

• (7) Transaction memory

59

In short
 This course shows how to wait-free

implement high-level atomic objects
out of basic objects

Remark. Unless explicitely stated
otherwise, objects mean atomic objects
and implementations are wait-free

