
A Short Introduction to +CAL

Michał Kapałka

EPFL, LPD

STiDC’06, 31.X 2006

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 1 / 18

About +CAL

Why +CAL

+CAL = algorithm language 6= programming language
Simple, clear syntax (Pascal- or C-like) ⇒ easy to use and
understand
Powerful tool for model-checking of algorithms
Expressive: many mathematical constructs available
Efficiency/implementation details a non-issue

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 2 / 18

About +CAL

+CAL in Short

No types, objects, pointers, etc. – pure simplicity
Standard constructs available: if, while, print, goto, procedures,
macros and others
Multi-threaded programs explicitly divided into (atomic) steps (by
labels) ⇒ no ambiguity
Non-deterministic behaviour can be easily expressed: range
variables, either/or statements
+CAL algorithms are translated to TLA+

TLA+ expressions can be used inside +CAL – ideas can be
expressed quickly, although not all can be executed as programs
Some concepts take time to get used to: arrays as functions, no
return values of procedures, labels, . . .

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 3 / 18

About +CAL

Today

1 Short tour over +CAL by examples
2 Details: in the +CAL manual (see the course web page this

evening)
3 Two exercises about +CAL

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 4 / 18

+CAL by Examples

Simple Example

Check whether n is a prime number (the simplest algorithm possible):

--algorithm IsPrimeNumber
variables n ∈ 1..N, k = 2, m, answer = TRUE;
begin

while (k < n) ∧ answer do
m := 2;
while (m ≤ k) ∧ answer do

if m * k = n then answer := FALSE; end if;
m := m + 1;

end while;
k := k + 1;

end while;
print 〈 n, answer 〉;

end algorithm

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 5 / 18

+CAL by Examples

A TLA+ Module for Our Example

File IsPrime.tla:

----- MODULE IsPrime -----
EXTENDS Naturals, TLC
CONSTANT N

(* --algorithm IsPrimeNumber
...
*)

* BEGIN TRANSLATION
* END TRANSLATION

=====

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 6 / 18

+CAL by Examples

Automatic Model-Checking

How to check if the algorithm is correct?
Using print⇒ tedious
Assertions – check that something should be true at some point
Invariants – check that something should always be true

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 7 / 18

+CAL by Examples

Assertions in Our Example

Instead of print 〈 n, answer 〉:
We put assert answer = isprime(n)

isprime is a TLA+ operator, which needs to be defined just after
the algorithm (before the BEGIN TRANSLATION line)
For example:

isprime(n) , ¬∃ k , m ∈ 2..n : k ∗m = n

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 8 / 18

+CAL by Examples

A Configuration File for Our Example

File IsPrime.cfg:

SPECIFICATION Spec
* Add statements after this line.
CONSTANT N = 200

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 9 / 18

+CAL by Examples

A Quick How-To

1 Write a .tla file with an algorithm (module name = file base
name!)

2 Set the CLASSPATH to the +CAL/TLA+ directory
3 Translate to TLA+: java pcal.trans Algorithm

4 Edit the configuration file Algorithm.cfg

5 To run: java tlc.TLC -simulate Algorithm

6 To check all possible executions: java tlc.TLC Algorithm

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 10 / 18

+CAL by Examples

Multi-Threaded Example Algorithm

We will try to implement binary consensus in +CAL:
Each process may propose 0 or 1 (input value)
The process then decides on (returns) a single value, 0 or 1
Agreement: no two processes decide differently
Validity: the value decided is one of the values proposed
Wait-freedom: every correct process that proposes a value
eventually decides

We will use write-once registers (only the first operation writes its
value)

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 11 / 18

+CAL by Examples

Multi-Threaded Example Algorithm (contd.)

EXTENDS Naturals, TLC, Sequences
CONSTANT N

NONE == CHOOSE n : n /∈ 0, 1

(* --algorithm ConsAlg
variables pvalues = [i ∈ 1..N 7→ NONE],

values = [i ∈ 1..N 7→ NONE],
R = NONE;

macro WRITE(val)
begin
if R = NONE then R := val end if;

end macro

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 12 / 18

+CAL by Examples

Multi-Threaded Example Algorithm (contd.)

procedure propose(pval)
begin

write: WRITE(pval);
decide: values[self] := R;
ret: return;

end procedure

process Proc ∈ 1..N
begin

pval: either pvalues[self] := 0
or pvalues[self] := 1 end either;

prop: call propose(pvalues[self]);
end process
end algorithm *)

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 13 / 18

+CAL by Examples

Consensus Properties

We can make +CAL check the consensus properties for all possible
executions of N processes:

Agreement , ∀ i , k ∈ 1..N :
(values[i] = NONE)∨
(values[k] = NONE)∨
(values[i] = values[k]) (1)

Validity , ∀ i ∈ 1..N :
(values[i] 6= NONE) ⇒
(∃ k ∈ 1..N : (values[i] = pvalues[k])) (2)

(We put them after END TRANSLATION)

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 14 / 18

+CAL by Examples

Configuration File for the Multi-Threaded Example

File Cons.cfg:

SPECIFICATION Spec
* Add statements after this line.
CONSTANT N = 2

NONE = 2
INVARIANT Agreement Validity

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 15 / 18

Exercises

Exercise for Today

1 Write a +CAL algorithm that implements consensus using a queue
(see the previous lecture).

2 Write one of the register transformations presented today using
+CAL. Note: if you use safe or regular registers (to implement
other ones), then try to define them in +CAL such that they are
really safe/regular, not atomic.

To get a bonus point, please:
1 Translate and try your algorithms using the +CAL/TLA+ toolkit.
2 Send me the .tla files by e-mail before the next exercises. Put in

comments your name and a short information about what and how
the algorithm does.

3 Prepare a short (printed) report with the algorithms (you can use,
e.g., TLATEX) and bring it to the next exercises (alternatively, you
can leave it in my office).

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 16 / 18

Exercises

Hints for Exercise 1

Define first a queue using a macro (only a dequeue operation)
A sequence in +CAL is defined as 〈e1, e2, . . . , ek 〉, where
e1, . . . , ek are its elements
Two useful operations on sequences: Head(seq) and Tail(seq)
(e.g., Head(〈1, 2〉) = 1 and Tail(〈1, 2, 3〉) = 〈2, 3〉
Strings are in double-quotes, e.g. "winner"

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 17 / 18

Exercises

Hints for Exercise 2

Macros are always executed in a single step ⇒ this will define an
atomic register:
macro WRITE(value) R := value; end macro

To define a safe/regular register you have to split an operation into
ivocation and response, so that something can happen inbetween:
macro RW INIT() ...end macro
macro WRITE(value) ...end macro

Clearly, when using the safe/regular register you should first
invoke RW INIT and then READ or WRITE (with separate labels).

Michał Kapałka (EPFL, LPD) +CAL Introduction STiDC’06, 31.X 2006 18 / 18

	About +CAL
	+CAL by Examples
	Exercises

