
1

© R. Guerraoui 1

The Power of Registers

Prof R. Guerraoui
Distributed Programming Laboratory

2

Atomic execution

p1

p2

p3

write(1) - ok

read() - 1

read() - 1

3

Atomic execution

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

4

Registers

Question 1: what objects can we implement
with registers? (this lecture)

Question 2: what objects we cannot
implement? (next lecture)

5

Wait-free implementations of
atomic objects

An atomic object is simply defined by its
sequential specification; i.e., by how its
operations should be implemented when
there is no concurrency

Implementations should be wait-free: every
process that invokes eventually gets a reply
(unless the process crashes)

6

Counter (sequential spec)
A counter has two operations inc() and
read() and maintains an integer x init to 0

read():
return(x)

inc():
x := x + 1;
return(ok)

2

7

Naive implementation
The processes share one register Reg
read():

return(Reg.read())
inc():

temp:= Reg.read()+1;
Reg.write(temp);
return(ok)

8

Atomic execution?

p1

p2

p3

inc() - ok

read() - 1

inc() - ok

9

Atomic implementation
The processes share an array of registers
Reg[1,..,n]

inc():
temp := Reg[i].read() +1;
Reg[i].write(temp);
return(ok)

10

Atomic execution?

p1

p2

p3

inc() - ok

read() - 2

inc() - ok

11

Atomic implementation

read():
sum := 0;
for j = 1 to n do

sum := sum + Reg[j].read();
return(sum)

12

Snapshot (sequential spec)
A snapshot has operations update() and
scan() and maintains an array x of size n

scan():
return(x)

update(i,v):
x[i] := v;
return(ok)

3

13

Very naive implementation
Each process maintains an array of integer
variables x init to [0,..,0]

scan():
return(x)

update(i,v):
x[i] := v;
return(ok)

14

Atomic execution?

p1

p2

p3

update(1,1) - ok

collect() - [0,0,0]

15

Less naive implementation
The processes share one array of N registers
Reg[1,..,N]
scan():

for j = 1 to N do
x[j] := Reg[j].read();

return(x)
update(i,v):

Reg[i].write(v); return(ok)

16

Atomic execution?

p1

p2

p3

update(1,1) - ok

collect() - [1,0,0]

17

Atomic execution?

p1

p2

p3

update(1,1) - ok

scan() - [1,0,2]

update(3,2) - ok

18

Atomic execution?

p1

p2

p3

scan() - [0,0,10]

update(2,1) - ok

update(3,10) - ok

4

19

Non-atomic vs
atomic snapshot

What we implement here is some kind of
regular snapshot:

A scan returns, for every index of the
snapshot, the last written values or the
value of any concurrent update

We call it collect

20

Key idea for atomicity

To scan, a process keeps reading the entire
snapshot (i.e., it collect), until two results at
the same

This means that the snapshot did not change,
and it is safe to return without violating
atomicity

21

Same value vs. Same timestamp

p1

p2

p3

scan() - [0,0,2]

collect()-[0,0,2]

update(2,0)

collect()-[0,0,2]

update(2,1)

update(3,2)

update(2,1) update(2,0) update(2,1)

update(3,2)update(3,0)

22

Enforcing atomicity
The processes share one array of N registers
Reg[1,..,N]; each contains a value and a
timestamp
We use the following operation for modularity
collect():

for j = 1 to N do
x[j] := Reg[j].read();

return(x)

23

Enforcing atomicity (cont’d)
scan():

temp1 := self.collect();
while(true) do

temp2 := self.collect();
temp1 := temp2;
if (temp1 = temp2) then

return (temp1.val)

update(i,v):
ts := ts + 1;
Reg[i].write(v,ts);
return(ok)

24

Wait-freedom?

p1

p2

p3

scan() - …

collect()-[0,0,10]

update(3,10) - ok

update(2,1) - ok

collect()-[0,1,10]

update(2,3) - ok

5

25

Key idea for atomicity
& wait-freedom

The processes share an array of registers
Reg[1,..,N] that contains each:

a value,
a timestamp, and
a copy of the entire array of values

26

Key idea for atomicity
& wait-freedom (cont’d)

To scan, a process keeps collecting and
returns a collect if it did not change, or some
collect returned by a concurrent scan

Timestamps are used to check if the
collect changes or if a scan has been taken
in the meantime

• To update, a process scans and writes the
value, the new timestamp and the result of
the scan

27

Snapshot implementation
Every process keeps a local timestamp ts

update(i,v):
ts := ts + 1;
Reg[i].write(v,ts,self.scan());
return(ok)

28

Snapshot implementation

scan():
t1 := self.collect(); t2:= t1
while(true) do

t3:= self.collect();
if (t3 = t2) then return (t3[j,3]);
for j = 1 to N do
if(t3[j,2] ≥ t1[j,2]+2) then

return (t3[j,3])
t2 := t3

29

Possible execution?

p1

p2

p3

scan() - [0,0,3]

update(3,2)-okupdate(3,1)-ok update(3,3)-ok

