Examples of Transactional Memory
Implementations

Michat Kapatka
EPFL, LPD

STiDC’06, 30.1 2007

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 1/19

How to Use Transactional Memory

A Counter (not thread-safe)

public class Counter { Counter cnt = new Counter();
private int c = O;
cnt.inc();
public void inc() { k := cnt.get();
c :=c + 1;
}
public int get() {

return c;

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 2/19

How to Use Transactional Memory

A Counter with Locks

public class Counter {

synchronized

public void inc() {
c :=c + 1;

}

synchronized

public int get() {

return c;

}

Michat Kapatka (EPFL, LPD)

TM Implementations

Counter cnt = new Counter();

cnt.inc();

k := cnt.get();
synchronized(cnt) {

cnt.inc();

k := cnt.get();

STiDC'06, 30.1 2007 3/19

How to Use Transactional Memory

Ideal Transactional Memory (1)

public class Counter { Counter cnt = new Counter();
Q@Atomic cnt.inc();
public void inc() { k := cnt.get();
c :=c + 1;

}

@Atomic
public int get() {

return c;

}

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 4/19

How to Use Transactional Memory

Ideal Transactional Memory (2)

@Atomic Counter cnt = new Counter();

public class Counter { k := incAndGet();

public void inc() {

c :=c +1;
} @Transactional
int incAndGet() {
public int get() { cnt.inc();
return c; return cnt.getQ;

}

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 5/19

How to Use Transactional Memory

Multiple Counters

Counter counters[100];

@Transactional
void incAllCountersAtomically() {

for(Counter cnt : counters) cnt.inc();

How to do it with locks?

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 6/19

Implementations

Implementing Transactional Memory

m In hardware (e.g., [Herlihy and Moss 93])

m In software (library, compiler, VM, etc.). Examples: DSTM
([Herliny et al. 03]), TL2 ([Dice et al. 06])

m Hardware-software hybrids

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 7/19

Implementations

Basic Idea

Atomicity = transactions do not observe any concurrency:
m Committed transactions: changes applied instantaneously

m Aborted transactions: changes never visible to others

Possible implementation of transaction atomicity:
m Many transactions can read the same object
m Writing requires exclusive ownership

m Conflicts = abort some transactions

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 8/19

Hardware Transactional Memory

Hardware Transactional Memory

State: non-transactional State: non-transactional
ICPU1E ICPU2E
cache cache
77777777777777777777777777777777777777 CC protocol

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: active State: non-transactional

NN NENEN] INENENNENENEE]

tread A — 1

CPU 1 CPU 2

INNNNNEENENEN]

TTTTTTITTTTTT
INNNNNEENENEN]

TTTTTTITTTTTTT

TTTTTTTTTITTTT TTTTTTTTTTTTT

cache cache

CC protocol

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: active State: active

NN NENEN] INENENNENENEE]

tread A — 1

tread A — 1

CPU 1 CPU 2

INNNNNEENENEN]

TTTTTTITTTTTT
INNNNNEENENEN]

TTTTTTITTTTTTT

TTTTTTTTTITTTT TTTTTTTTTTTTT

cache cache

CC protocol

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: active State: aborted
gHHHlHHHE treadA_)1 gHHHHlHHE treadA_>1
JCPU1E JCPU2E twrite A, 2

TTTTTTTTTITTTT TTTTTTTTTTTTT

cache cache

CC protocol

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: active State: non-transactional
gHHHHHH}E treadA_)1 gHHHHHHlE treadA_>1
JCPU1E JCPU2E twrite A, 2

] E E £ commit — false

TTTTTTTTTITTTT TTTTTTTTTTTTT

cache cache

CC protocol

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: active State: non-transactional
gHHHHHlHE treadA_)1 ngHHHHHE treadA—>1
1CPU1E twrite B, 3 1CPU2E twrite A, 2

] E E £ commit — false

TTTTTTTTTITTTT TTTTTTTTTTTTT

cache cache

CC protocol

=2 [a=1

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: active State: non-transactional
gHHHHHlHE treadA_)1 ngHHHHHE treadA—>1
1CPU1E twrite B, 3 1CPU2E twrite A, 2

] E E £ commit — false

TTTTTTTTTITTTT TTTTTTTTTTTTT

cache cache

CC protocol

=2 [a=1

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: committed State: non-transactional
ngHHHHHE treadA_)1 ngHHHHHE treadA_>1
1CPU1E twrite B, 3 1CPU2E twrite A, 2

E £ commit — true 3 £ commit — false

TTTTTTTTTITTTT TTTTTTTTTTTTT

cache cache

CC protocol

[B=2] [A-1]

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: committed State: non-transactional
ngHHHHHE treadA_)1 ngHHHHHE treadA_>1
1CPU1E twrite B, 3 1CPU2E twrite A, 2

E £ commit — true 3 £ commit — false

TTTTTTTTTITTTT TTTTTTTTTTTTT

cache cache

CC protocol

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

Hardware Transactional Memory

Hardware Transactional Memory

State: committed State: non-transactional
gHHHHHlHE treadA_)1 gHHHHHlHE treadA_>1
1CPU1E twrite B, 3 1CPU2E twrite A, 2
iHHHHHTHE abort iHHHHHTHE Commitﬁfalse
cache cache
77777777777777777777777777777777777777 CC protocol

-2 [A-1]

Shared memory

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 9/19

DSTM

Thread-Safe Counter using DSTM

TMObject cnt = new TMObject(new Counter());

beginTransaction() ;
Counter tmp_cnt = cnt.openWrite();
tmp_cnt.inc();

boolean committed = commitTransaction();

beginTransaction() ;
tmp_cnt = cnt.openRead();
k := tmp_cnt.get();

committed = commitTransaction();

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 10/19

DSTM — The Idea

transaction
new object o——»| Counter (c =0) ‘
old object
Locator

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 11/19

DSTM — The Idea

transaction
@o—» new object e Counter (¢ = 0)
old object
Locator

Transaction T wants to increment the counter

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 11/19

DSTM — The Idea

transaction T T (active)

new object F4>{ Counter (¢ = 0) ‘

old object

New Locator

transaction
new object F—{ Counter (c = 0) ‘
old object
Locator

Step 1: Create new locator, clone the counter

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 11/19

DSTM — The Idea

.. T (active)

transaction ®
new object F4>{ Counter (¢ = 0) ‘

old object

New Locator

transaction
new object F—{ Counter (c = 0) ‘
old object
Locator

Step 2: Compare&Swap TMObject

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 11/19

DSTM — The Idea

transaction T T (active)

new object F4>{ Counter (c = 1) ‘

old object

New Locator

transaction
new object F—{ Counter (c = 0) ‘
old object
Locator

Step 3: Invoke inc () on the new counter

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 11/19

DSTM — The Idea

transaction ® T T (active)

new object F—»{ Counter (c = 1) ‘

old object o

New Locator

transaction
new object F—»| Counter (c =0) ‘
old object
Locator

Old objects can be eventually garbage collected

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’08, 30.1 2007 11/19

Resolving Conflicts

transaction ® T | T (active)

TMObject new object F—{ Counter (c = 1) ‘

old object
J "\ﬂ Counter (¢ = 0) ‘

Locator

Now another transaction 7’ wants to read the counter = three
possibilities:

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 12/19

Resolving Conflicts

ransaction e ——1 | (@borted)

TMObject new object F—{ Counter (c = 1) ‘

old object o¢__|

Counter (¢ = 0) ‘

Locator

Now another transaction T’ wants to read the counter = three
possibilities:

Variant 1: abort transaction T (Compare&Swap on state of T)

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 12/19

Resolving Conflicts

ransaction e ——1 | (@borted)

TMObject new object F—{ Counter (c = 1) ‘

old object o¢__|

Counter (¢ = 0) ‘

Locator

Now another transaction T’ wants to read the counter = three
possibilities:

Variant 1: abort transaction T (Compare&Swap on state of T)
= invoke read () on old counter

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 12/19

Resolving Conflicts

transaction ® T | T (active)

TMObject new object F—{ Counter (c = 1) ‘

old object o¢__|

Counter (¢ = 0) ‘

Locator

Now another transaction 7’ wants to read the counter = three
possibilities:

Variant 2: wait until T commits or aborts, then:

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 12/19

Resolving Conflicts

| T (committed
transaction ® ’ ()‘

TMObject new object F—{ Counter (c = 1) ‘

old object o¢__|

Counter (¢ = 0) ‘

Locator

Now another transaction T’ wants to read the counter = three
possibilities:

Variant 2: wait until T commits or aborts, then:
T committed = invoke read () on new counter

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007

Resolving Conflicts

ransaction e ——1 | (@borted)

TMObject new object F—{ Counter (c = 1) ‘

old object o¢__|

Counter (¢ = 0) ‘

Locator

Now another transaction T’ wants to read the counter = three
possibilities:

Variant 2: wait until T commits or aborts, then:
T aborted = invoke read () on old counter

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 12/19

Resolving Conflicts

transaction ® T | T (active)

TMObject new object F—{ Counter (c = 1) ‘

old object o¢__|

Counter (¢ = 0) ‘

Locator

Now another transaction T’ wants to read the counter = three
possibilities:

Variant 3: abort transaction T’

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007

12/19

Resolving Conflicts

transaction ®

.. T (active)

TMObject new object F—{ Counter (c = 1) ‘

old object o¢__|

Locator

Counter (¢ = 0) ‘

Now another transaction 7’ wants to read the counter = three

possibilities:

Which variant to choose? = contention manager module decides

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 12/19

Reading Objects

Transaction T wants to read an object:

If the object written by an active transaction = resolve conflict
Then, two techniques possible:
m Visible reads: T adds itself to a shared list of readers (pointed by
the locator) = readers have to write to shared memory (cache!)
m Invisible reads (DSTM): T reads the object and remembers locally
the value = writers do not know about readers = need validation
Validation: make sure no object previously read has changed (for
n objects read so far, O(n) complexity in DSTM!)

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 13/19

The Last Steps

m T wants to commit:
Validate (again!)
Change state to “committed” (using C&S)

m T wants to abort: change state to “aborted”

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 14/19

TL2 — The Idea

m Use locks = no copies, memory address
no indirection

m Invisible reads \

m Make validation cheaper: value mapplng
timestamps

m Lock and write to objects only] lock + version \

on commit time

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 15/19

The Algorithm (1)

Uses a global version (strong) counter V
Locks are 1-bit values (1 = locked)
Local variables: rver, rset, wver, wset

upon beginTransaction
| rver— V.read()

upon write(addr, val)
| wset — wset U {(addr, val)}

(Note that this is just a rough approximation of the TL2 algorithm. For
detailed description see [Dice et al. 06])

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’06, 30.1 2007 16/19

The Algorithm (2)

upon read(addr)
if addr € wset then return wset{addr].val

(h, v1) < lockver{addr]

val — read value from addr

(b, v2) < lockveriaddr]

if , =10rk=10rvy # v or v > rverthen abort
rset — rset U {(addr, val)}

return va/

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 17/19

The Algorithm (3)

upon commitTransaction

foreach (addr, val) € wset do
L try to acquire lock in lockver{addr]

if failed to acquire then abort

wver — V.inc()
if wver # rver+ 1 then

foreach (addr, val) € rset do
L (I, v) « lockver{addr]

if v > rveror | =1 then abort

foreach (addr, val) € wsetdo
L store val at address addr

lockver{addr] — (0, wver)

Michat Kapatka (EPFL, LPD) TM Implementations STiDC'06, 30.1 2007 18/19

Further Reading

[@ M. Herlihy, J. E. B. Moss.
Transactional memory: architectural support for lock-free data structures.
In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pp. 289-300, 1993.

ERY Herlihy, V. Luchangco, M. Moir, and W. N. Scherer lII.
Software transactional memory for dynamic-sized data structures.
In Proceedings of the 22th Annual ACM Symposium on Principles of
Distributed Computing (PODC’03), pp. 92—101, 2003.

ﬁ D. Dice, O. Shalev, and N. Shavit.
Transactional locking Il.

In Proceedings of the 20th International Symposium on Distributed
Computing (DISC’06), 2006.

Michat Kapatka (EPFL, LPD) TM Implementations STiDC’08, 30.1 2007 19/19

	How to Use Transactional Memory
	Implementations
	Hardware Transactional Memory
	DSTM
	TL2
	

