
STiDC’07: Exercise 2

October 8, 2007 (updated on October 22, 2007)

1 Problem 1

In Exercise 1, we were implementing a binary consensus object from a queue initialized to 〈winner,
loser 〉 and two atomic registers, in a system of 2 processes. Write an algorithm that implements bi-
nary consensus for 2 processes using (any number of) queue objects that are initially empty and atomic
registers.

2 Problem 2

Assume we have a shared object Q that implements, among others, an operation init(s) that atomically
changes the state of Q to s. Let A be an algorithm that implements n-process consensus using object
Q initialized to some state q 6= ⊥. Find an algorithm B that implements n-process consensus using
algorithm A, a number of instances of object Q initialized to ⊥, and atomic registers, or prove that such
an algorithm does not exist.

3 Solutions

First, let us recall the binary consensus algorithm for 2 processes using a queue Q initialized to 〈 ”winner”,
”loser” 〉 and 2 atomic registers R[1, 2]:

procedure consi(Q, R, vali)
R[i]← vali
qi ← Q.deq()
if qi = ”winner” then return vali
else return R[3− i]

Now, we will implement a binary consensus algorithm for 2 processes using 2 queues, Q1 and Q2,
that are initially empty and 6 atomic registers, R1,2[1, 2] and ready1,2 (initialized to false). The basic
idea is the following: each process pi (i = 1, 2) first initializes queue Qi to 〈 ”winner”, ”loser” 〉 and sets
register readyi to true. Once queue Qi is initialized, each process can run the above consensus algorithm
(procedure cons) using Qi and registers Ri[1, 2]. Process pi, after initializing queue Qi, runs consi for
each queue that is already initialized (i.e., only Qi, or both Qi and Q3−i) in an order common for both
processes. An important thing to note is that if pi decides some value v in the first consensus (using
Q1), then pi proposes v to the other consensus (using Q2). The exact algorithm is the following:

upon proposei(vali)
Qi.enq(”winner”)
Qi.enq(”loser”)
readyi ← true
for k← 1, 2 do

if readyk then vali ← consi(Qk, Rk, vali)
return vali

1



It is straightforward to generalize the above algorithm and thus solve Problem 2. The algorithm is
the following:

upon proposei(vali)
Qi.init(q)
readyi ← true
for k← 1, . . . , n do

if readyk then vali ← consi(Qk, vali)
return vali

Where: Q1,...,n are instances of shared object Q initialized to ⊥ and consi(Qk, vali) is an n-consensus
algorithm (at process pi) that uses object Qk initialized to state q.

2


