STiDC’07: Exercise 3

October 22, 2007 (updated on October 30, 2007)

1 Problem

A splitter is a shared object that has only one operation, called splitter, that can return stop, left or right.
Every splitter object ensures the following:

1. If a single process executes splitter, then the process is returned stop;
2. If two or more processes execute splitter, then not all of them get the same output value; and
3. At most one process is returned stop.

Your task is to implement a wait-free, atomic splitter object using only atomic (multi-valued, MRMW)
registers.

2 Solution

We use two registers:
e P (multi-valued), and
e S (binary, initialized to false)
Code for process p;:
upon splitter;
P«
if S then return “right”
S « true

if P = i then return “stop”

| return "left”

Note: The implementation is atomic (linearizable). This means that if a process p; crashes while ex-
ecuting the splitter operation, we can assume that either (1) the operation did not take place at all (no
linearization point), or (2) the operation has completed with some (arbitrarily chosen) return value (lin-
earization point can be anywhere after the operation starts).



