STiDC’07: Exercise 5

November 26, 2007

Write an algorithm that implements a fetch-and-increment object using atomic
registers and compare-and-swap objects.

Reminder: Fetch-and-increment is a shared object that maintains a single
variable c, initialized to 0, and provides a single operation fetch&inc with the
following sequential specification:

operation fetch&inc()

c’ :=c

c:=c+1

return c’
end

A compare-and-swap object is a shared object that maintains a single variable
v, initialized to 1, and provides a single operation CAS with the following
sequential specification:

operation CAS(oldVal, newVal)

v = v
if v = oldVal then v := newVal
return v’

end



Solution. Here is an example algorithm that implements a fetch-and-increment
object using: (1) a single compare-and-swap object C (initialized to (-1, ..., —1)),
and (2) array R of N atomic registers (each initialized to —2). The local variable
(array) last; is initialized to (—1, ..., —1) at every process p;.

upon fetch&ine(); do
Rli] « last;[i]
repeat
fork — 1to N do r[k] < R[k]
m «— max(r[k]) +1
new <« last;
fork < 1to N do

L if r[k] = last;[k] then new[k] — m

m«—m+1
v «— C.CAS(last;, new)
if v = last; then last; — new
else last; — v

until last;[i] > R][i]

| return last;[i]




