
STiDC’07: Exercise 6

November 19, 2007 (updated on November 26, 2007)

Let A be an obstruction-free algorithm implementing some shared object O with operations op1, . . . , opk.
The goal of the exercise is to transform algorithm A into a wait-free algorithm B that also implements
shared object O (i.e., the operations op1, . . . , opk). We will do it by implementing an abstraction called a
contention manager, using an eventually perfect failure detector ♦P and atomic registers.

Wait-free implementation B of shared object O

Obstruction-free
algorithm A

Contention manager Failure detector ♦P
try/resign suspected

A contention manager implements two operations: tryi and resigni (invoked by process pi). These
operations do not take any arguments and always return ok. A contention manager resolves contention,
and thus guarantees wait-freedom, by delaying some processes that have invoked tryi. In other words,
when a process pi invokes tryi, a contention manager can decide when to return from the operation—it
can delay the response of tryi for an arbitrarily long time.

We assume that algorithm A uses the interface of the contention manager, i.e., that it invokes tryi
and resigni. More precisely, every time an operation opm, implemented by A, is executed by a process
pi, the following conditions are satisfied:

1. tryi is called always before the first step of the implementation of opm is executed (i.e., just after
opm is invoked), and possibly many times while opm is being executed,

2. resigni is called only immediately after the last step of the implementation of opm is executed (i.e.,
just before the result of opm is returned),

3. If process pi is correct but never returns from operation opm (i.e., the implementation of the oper-
ation is executed infinitely long), then pi calls tryi infinitely many times.

Moreover, every time process pi invokes tryi or resigni, pi waits until tryi/resigni returns before execut-
ing any further steps of algorithm A.

An eventually perfect failure detector ♦P maintains, at every process pi, a set suspectedi of suspected
processes. ♦P guarantees that eventually, after some unknown time, the following conditions are sat-
isfied:

1. Every correct process permanently suspects every crashed process,

2. No correct process is ever suspected by any correct process.

This means that suspectedi can be arbitrary and different at every process for any finite period of time.
However, eventually, at every correct process pi, set suspectedi will be permanently equal to the set of
processes that have crashed.

Your task is to implement a contention manager C (i.e., the operations tryi and resigni, for every
process pi) that converts obstruction-free algorithm A into wait-free algorithm B, and that uses only
atomic registers and failure detector ♦P .

1



Solution. The following algorithm implements a contention manager that transforms any obstruction-
free algorithm into a wait-free one:

uses: T[1, . . . , N]—array of registers
initially: T[1, . . . , N]← ⊥
upon tryi do

if T[i] = ⊥ then T[i]← GetTimestamp()
repeat

sacti ← { pj | T[j] 6= ⊥ ∧ pj /∈ ♦P .suspectedi }
leaderi ← the process in sacti with the lowest timestamp T[leaderi]

until leaderi = pi

upon resigni do
T[i]← ⊥

The algorithm uses a procedure GetTimestamp() that generates unique timestamps. We assume
that if a process gets a timestamp t from GetTimestamp(), then no process can get a timestamp lower
than t infinitely many times. Thus, we can easily implement GetTimestamp() using only registers (or
even without using any shared objects). For example, we can use the output of a counter (see the
lecture notes on how to implement a counter from registers) combined with a process id (to ensure that
timestamps are unique).

2


