
A Solution for the Exercise 7
(Faulty Base Objects)

EPFL, LPD

STiDC’07

(EPFL, LPD) Ex.7 Solution STiDC’07 1 / 9



Problem 1: Compare and Swap

Question: Is it possible to implement C&S using a finite number of
base C&S objects one of which can be faulty in a non-responsive way?

Short answer: No, it is not.

(EPFL, LPD) Ex.7 Solution STiDC’07 2 / 9



Main Idea

Problem P: implement C&S using base C&S objects, one of which
can be non-responsive, and registers (non-faulty).

Reduce to problem Q: implement consensus using registers in a
system of n > 1 processes, one of which can crash⇒ impossible

By contradiction: assume there exists an algorithm A that solves
P using k C&S objects, in a system of n processes (one of which
can crash)

If we find an algorithm B that solves problem Q, using A⇒
contradiction

(EPFL, LPD) Ex.7 Solution STiDC’07 3 / 9



The Reduction

We implement consensus in a system of N = max(k , n)

processes, one of which can crash

A process pi that proposes a value, writes the value in a register
R[i] and waits until a decided value is written in register D:

initially: D = ⊥, R[1, . . . , N] = ⊥

upon proposei(v) do
R[i]← v
wait until D 6= ⊥
return D

(EPFL, LPD) Ex.7 Solution STiDC’07 4 / 9



The Reduction (2)

k processes emulate base C&S objects (in a parallel task; operation
requests and responses passed via registers CS between each pair of
processes):

parallel task Ci
initially: q = ⊥ (local variable)

while true do
for j ← 1 to n do

(type, oldval, newval)← CS[i][j]
if type = invocation then

if q = oldval then q ← newval
CS[i][j]← (response, q)

(EPFL, LPD) Ex.7 Solution STiDC’07 5 / 9



The Reduction (3)

n processes run the following algorithm in a parallel task:

1 Wait until some value v 6= ⊥ is written in some register R[j],

2 Run algorithm A with operation C&S(⊥, v), using the emulated
base C&S objects,

3 Write the value returned by A into register D.

(EPFL, LPD) Ex.7 Solution STiDC’07 6 / 9



Problem 2: SWMR Register

Problem: Implement SWMR register out of base SWMR registers, t of
which can fail in a non-responsive way.

Solution: Use 2t + 1 base registers, so that always majority is correct.
Read/write from/to majority of registers.

(EPFL, LPD) Ex.7 Solution STiDC’07 7 / 9



The Idea

uses: R[1, . . . , 2t + 1] – SWMR registers t of which can be
non-responsive

upon write1(v) do
ts← ts + 1
invoke write1(ts, v) on all R[1, . . . , 2t + 1]

wait for t + 1 responses

upon readi do
invoke readi(v) on all R[1, . . . , 2t + 1]

wait for t + 1 responses
return the value v with the highest timestamp ts

This algorithm implements a regular SWMR register!

(EPFL, LPD) Ex.7 Solution STiDC’07 8 / 9



The Idea (contd.)

The presented algorithm implements a regular SWMR register.
However, a regular register can be transformed into an atomic one
(see the lecture slides about register transformations).

(EPFL, LPD) Ex.7 Solution STiDC’07 9 / 9


