STiDC'07: Exercise 8

December 3, 2007 (updated on January 6, 2008)

1 Problem

Devise an obstruction-free, anonymous algorithm that implements binary consensus using **finite** number of (unbounded) counters.

Reminder: a counter object implements two operations: *inc*, which increments the value of the counter and returns *ok*, and *read*, which returns the current value of the counter.

2 Solution

The following algorithm solves the problem:

uses: C_0 , C_1 – counters

upon propose(v) do

while true do

 $(x_0, x_1) \leftarrow readCounters()$ if $x_0 > x_1$ then $v \leftarrow 0$ else if $x_1 > x_0$ then $v \leftarrow 1$ if $|x_0 - x_1| \ge n$ then return v $C_v.inc()$

The *readCounters* procedure atomically reads both counters C_0 and C_1 . It can be implemented as follows:

upon readCounters() **do while** true **do** $\begin{bmatrix} x_0 \leftarrow C_0.read() \\ x_1 \leftarrow C_1.read() \\ x'_0 \leftarrow C_0.read() \\ if x_0 = x'_0$ then return (x_0, x_1)