
STiDC’07: Example Final Exam Questions

January 6, 2008

Problem 1

Implement a multi-valued SWMR safe register, using a minimal number of base multi-valued SWMR
safe registers of which b can be malicious (but are responsive). A malicious register can return any value
from the read operation, even when there are no concurrent operations (however, it does not become
non-responsive).

Solution. The idea of the solution is the following. We use 2b + 1 base safe registers. A write operation
writes to all base registers the same value given as an argument. A read operation reads from all base
registers, and returns the value read from a majority of them. If there is no value that is read from a
majority of base registers, the read operation can return any value.

Problem 2

We can define an UpDownCounter object as follows. The state of the object is an integer c. The object
implements 3 operations: read returns the state of the object c without changing c, inc increases c by 1
and returns ok, and dec decreases c by 1 and returns ok.

1. Here is a proposed (incorrect) implementation of an UpDownCounter for n processes, using n
atomic registers (code for process pi):

uses: A[1, . . . , n] – atomic registers
initially: A[1, . . . , n] = 0

upon readi() do
v← 0
for k← 1 to n do

v← v + A[k].readi()
return v

upon inci() do
v← A[i].readi()
A[i].writei(v + 1)

upon deci() do
v← A[i].readi()
A[i].writei(v− 1)

Show that this algorithm does not implement an atomic, wait-free UpDownCounter by giving an
execution of the algorithm in which atomicity (linearizability) is violated.

2. Give an algorithm that implements an UpDownCounter object using only atomic registers.

3. For how many processes one can implement a consensus object using any number of (atomic,
wait-free) UpDownCounter objects and atomic registers?

1



Solution. The algorithm is not a linearizable (atomic) implementation of an UpDownCounter. To prove
it, consider the following execution of the algorithm:

Step Process p1 Process p2 Process p3

1. invokes read1()
2. reads A[1] = 0
3. reads A[2] = 0
4. invokes inc2()
5. writes A[2]← 1
6. returns ok
7. invokes dec3()
8. writes A[3]← −1
9. returns ok
10. reads A[3] = −1
11. returns −1

The execution is not linearizable because the operations inc2() and dec3() are not concurrent, and so the
operation read1() should have returned either 0 or 1. However, read1() returns −1.

The UpDownCounter object can be easily implemented from an atomic snapshot object, which can be
implemented from registers (see the lecture slides). The algorithm would be the following:

uses: S – atomic snapshot (other variables are local)
initially: ci = 0 at every process pi, and the value of each element of S is 0

upon readi() do
A← S.scani()
v← 0
for k← 1 to n do

v← v + A[k]
return v

upon inci() do
ci ← ci + 1
S.updatei(ci)

upon deci() do
ci ← ci − 1
S.updatei(ci)

As atomic snapshot can be implemented from registers, also an UpDownCounter can be implemented
from registers. Every object that can be implemented from registers can solve consensus among only
one process (in an asynchronous system, in which one process can crash; see the lecture notes for the
relevant proof).

Problem 3

An SB object is a shared object that has three states, ⊥, 0 and 1, and one operation, called set(b), where
b ∈ {0, 1}. If the object is in state ⊥, then set(b) operation changes the state to b and returns b. If the
object is in state s (where s ∈ {0, 1}), the set(b) operation changes the state to s ∧ ¬b and returns the
new state of the object (i.e., s ∧ ¬b).

• Prove the following lemma: If there is a wait-free consensus algorithm for n processes that use k
registers and j SB objects, then there is a wait-free consensus algorithm for n + 1 processes that
uses k + 2 registers and j + 1 SB objects.

2



• For how many processes one can implement a wait-free consensus object using (any number of)
SB objects and atomic registers?

Solution. To prove the lemma, we show an algorithm that implements (n + 1)-consensus (i.e., con-
sensus for n + 1 processes) using n-consensus (e.g., implemented using SB objects and registers), two
registers and one SB object. The algorithm is the following:
For processes p1, . . . , pn:

upon propose(vi) do
v← nCons.propose(vi)
R[0]← v
w← SB.set(0)
if w = 0 then return v
else return R[1]

For process pn+1:

upon propose(vn+1) do
R[1]← vn+1
w← SB.set(1)
if w = 1 then return vn+1
else return R[0]

Clearly, the above lemma almost immediately proves that an SB object can implement consensus for
any number of processes (hint: implement 1-consensus, then use induction and the above lemma).

3


