STiDC'07: Example Final Exam Questions

January 6, 2008

Problem 1

Implement a multi-valued SWMR safe register, using a *minimal* number of base multi-valued SWMR safe registers of which *b* can be *malicious* (but are responsive). A malicious register can return any value from the *read* operation, even when there are no concurrent operations (however, it does *not* become non-responsive).

Solution. The idea of the solution is the following. We use 2b + 1 base safe registers. A write operation writes to *all* base registers the same value given as an argument. A read operation reads from all base registers, and returns the value read from a majority of them. If there is no value that is read from a majority of base registers, the read operation can return any value.

Problem 2

We can define an UpDownCounter object as follows. The state of the object is an integer *c*. The object implements 3 operations: *read* returns the state of the object *c* without changing *c*, *inc* increases *c* by 1 and returns *ok*, and *dec* decreases *c* by 1 and returns *ok*.

1. Here is a proposed (incorrect) implementation of an UpDownCounter for *n* processes, using *n* atomic registers (code for process *p_i*):

```
uses: A[1,...,n] – atomic registers

initially: A[1,...,n] = 0

upon read_i() do

v \leftarrow 0

for k \leftarrow 1 to n do

v \leftarrow v + A[k].read_i()

return v

upon inc_i() do

v \leftarrow A[i].read_i()

A[i].write_i(v+1)

upon dec_i() do

v \leftarrow A[i].read_i()

A[i].write_i(v-1)
```

Show that this algorithm does not implement an atomic, wait-free UpDownCounter by giving an execution of the algorithm in which atomicity (linearizability) is violated.

- 2. Give an algorithm that implements an UpDownCounter object using only atomic registers.
- 3. For how many processes one can implement a consensus object using any number of (atomic, wait-free) UpDownCounter objects and atomic registers?

Solution.	The algorit	hm is not a	linearizable	(atomic)	impl	lementatio	n of an	UpDown	Counter.	To prove
it, consider	r the followi	ng executio	n of the algo	orithm:						

Step	Process p_1	Process p_2	Process <i>p</i> ₃
1.	invokes $read_1()$		
2.	reads $A[1] = 0$		
3.	reads $A[2] = 0$		
4.		invokes <i>inc</i> ₂ ()	
5.		writes $A[2] \leftarrow 1$	
6.		returns ok	
7.			invokes <i>dec</i> ₃ ()
8.			writes $A[3] \leftarrow -1$
9.			returns ok
10.	reads $A[3] = -1$		
11.	returns -1		

The execution is not linearizable because the operations $inc_2()$ and $dec_3()$ are not concurrent, and so the operation $read_1()$ should have returned either 0 or 1. However, $read_1()$ returns -1.

The UpDownCounter object can be easily implemented from an atomic snapshot object, which can be implemented from registers (see the lecture slides). The algorithm would be the following:

uses: *S* – atomic snapshot (other variables are local) **initially**: $c_i = 0$ at every process p_i , and the value of each element of *S* is 0

```
upon read_i() do

A \leftarrow S.scan_i()

v \leftarrow 0

for k \leftarrow 1 to n do

\lfloor v \leftarrow v + A[k]

return v

upon inc_i() do

c_i \leftarrow c_i + 1

S.update_i(c_i)

upon dec_i() do

c_i \leftarrow c_i - 1

S.update_i(c_i)
```

As atomic snapshot can be implemented from registers, also an UpDownCounter can be implemented from registers. Every object that can be implemented from registers can solve consensus among only one process (in an asynchronous system, in which one process can crash; see the lecture notes for the relevant proof).

Problem 3

An SB object is a shared object that has three states, \perp , 0 and 1, and one operation, called *set*(*b*), where $b \in \{0,1\}$. If the object is in state \perp , then *set*(*b*) operation changes the state to *b* and returns *b*. If the object is in state *s* (where $s \in \{0,1\}$), the *set*(*b*) operation changes the state to $s \land \neg b$ and returns the new state of the object (i.e., $s \land \neg b$).

• Prove the following lemma: If there is a wait-free consensus algorithm for *n* processes that use *k* registers and *j* SB objects, then there is a wait-free consensus algorithm for *n* + 1 processes that uses *k* + 2 registers and *j* + 1 SB objects.

• For how many processes one can implement a wait-free consensus object using (any number of) SB objects and atomic registers?

Solution. To prove the lemma, we show an algorithm that implements (n + 1)-consensus (i.e., consensus for n + 1 processes) using *n*-consensus (e.g., implemented using SB objects and registers), two registers and one SB object. The algorithm is the following: For processes p_1, \ldots, p_n :

upon $propose(v_i)$ **do** $v \leftarrow nCons.propose(v_i)$ $R[0] \leftarrow v$ $w \leftarrow SB.set(0)$ **if** w = 0 **then return** v**else return** R[1]

For process p_{n+1} :

upon $propose(v_{n+1})$ **do** $R[1] \leftarrow v_{n+1}$ $w \leftarrow SB.set(1)$ **if** w = 1 **then return** v_{n+1} **else return** R[0]

Clearly, the above lemma almost immediately proves that an SB object can implement consensus for any number of processes (hint: implement 1-consensus, then use induction and the above lemma).