
Selected Topics
in Distributed Computing

Final exam

January 17, 2008

Last Name:

First Name:

Problem Max points Points obtained
1 2
2 2
3 2
4 1
5 1
6 2

Total 10

1

Exam rules:

1. Exam time: from 14.15 to 17.15.

2. The exam is closed book. No electronic devices are allowed.

3. You can use any notation for algorithms, but remember to write which variables
represent shared objects (e.g., registers) and which are process-local.

4. Describe shortly the main idea behind every algorithm you give.

5. Keep in mind that only one operation on one shared object (e.g., a read or a write
of a register) can be executed by a process in a single step. To avoid confusion
(and common mistakes):

• make your algorithms access registers only by explicitly calling register op-
erations read and write (e.g., use R.write(5) instead of R := 5), and

• write only a single atomic step in each line of an algorithm.

6. The exam grade will be computed in the following way: 1.0 (for handing in the
exam) plus the number of points obtained divided by 2.

Assumption: We assume an asynchronous, shared-memory system of n processes, out
of which n− 1 might crash.

Good luck!

2

Problem 1 (2 points)

Write an algorithm that implements a MRMW atomic multi-valued wait-free register
using (any number of) MRSW atomic multi-valued wait-free registers.

3

4

Problem 2 (2 points)

Write an algorithm that implements an atomic wait-free counter object using only
(MRMW atomic multi-valued wait-free) registers.

Reminder: A counter object has two operations: inc() and read(), and maintains an
integer x initialized to 0. The sequential specification of a conter object is the following:

read():

return x;

inc():

x := x + 1;

return ok;

5

6

Problem 3 (2 points)

Task A (0.5 point). Give the specification of a wait-free consensus object.

Task B (1.5 point). A swap object has one operation swap(v), and maintains an in-
teger x initialized to 0. Intuitively, the swap(v) operation (with value v given as an
argument) atomically changes the value of x to v and returns the previous value of x
(i.e., swaps the values of x and v). More precisely, the sequential specification of a swap
object is as follows:

swap(v):

tmp := x;

x := v;

return tmp;

Write an implementation of a wait-free consensus object using only (atomic, wait-
free) swap objects and (MRMW atomic multi-valued wait-free) registers, in a system
with two processes (i.e., for n = 2).

7

8

Problem 4 (1 point)

Consider the following, incorrect, implementation of an anonymous obstruction-free
consensus object from counters:

uses: C0, C1 – counters

upon propose(v) do
while true do

(x0, x1)← readCounters()
if x0 > x1 then v← 0
else if x1 > x0 then v← 1
if |x0 − x1| ≥ 1 then return v
Cv.inc()

where readCounters procedure is implemented as follows:
upon readCounters() do

while true do
x0 ← C0.read()
x1 ← C1.read()
x′0 ← C0.read()
if x0 = x′0 then return (x0, x1)

Give an execution of the above algorithm that shows that the algorithm is not a
correct implementation of an anonymous obstruction-free consensus object, i.e., an
execution in which some property of obstruction-free consensus is violated.

9

10

Problem 5 (1 point)

Consider a simple (distributed) memory allocation object that has only one operation
called dmalloc. If a process pi invokes dmalloc() (with no parameters), pi is returned
an address of a free memory block that pi can subsequently use. For simplicity, we
assume that:

1. All memory blocks are of the same size, and their addresses are integers 0, 1, 2,
. . . , and

2. No process invokes dmalloc more than M times in any execution, where M is
some known constant.

The memory allocation object ensures the following (in every execution):

1. No two processes are returned the same address by dmalloc.

2. The highest address w returned by dmalloc (at any process) in a given execution
is bounded by a function f (k), where k is the number of invocations of dmalloc in
that execution, and f is independent of the total number of processes n.

Write an algorithm that implements a wait-free memory allocation object (i.e., its
dmalloc operation) using only (MRMW atomic multi-valued wait-free) registers.

11

12

Problem 6 (2 points)

Intuitively, “fail-only”-consensus provides an implementation of consensus, but allows
some propose operations to abort when these cannot terminate and return a decision
value because of other concurrent invocations of propose. When propose aborts, it means
that the operation did not take place, and so the value proposed using this operation
has not been “registered” by the consensus object. A process which propose operation
has been aborted may retry the operation many times (possibly with different pro-
posed value), until a decision value is returned.

More precisely, let D be any set, such that ⊥ /∈ D. A “fail-only”-consensus object
implements a single operation, called propose, that takes a value v ∈ D as an argument
and returns a value v′ ∈ D ∪ {⊥}. If a process pi is returned a non-⊥ value v′ from
propose(vi), we say that pi decides value v′. Once pi decides some value, pi does not
invoke propose anymore. We say that pi commits value v if pi invokes propose(v) and
decides value v (i.e., pi decides the value that pi has proposed). When operation propose
returns⊥, we say that the operation aborts. We say that a propose operation executed by
a process pi is step contention-free, if no process other thatn pi executes a step between
the invocation and the response of the operation. Every “fail-only”-consensus object
satisfies the following properties in every execution::

Fo-validity If some process decides value v, then some process commits v.

Agreement No two processes decide different values.

Fo-obstruction-freedom If a propose operation is step contention-free, then the opera-
tion cannot abort.

Wait-freedom If a correct process pi invokes a propose operation, then pi eventually
returns from the operation.

The consensus number of a shared object O is the maximum number of processes
among which one can solve consensus using any number of instances of O (i.e., objects
of the same type as O) and (MRMW atomic multi-valued wait-free) registers.

Prove that the consensus number of a “fail-only”-consensus object equals 2 by:

1. Showing an algorithm that implements a wait-free 2-consensus object (i.e., con-
sensus for 2 processes) using only “fail-only”-consensus objects and (MRMW
atomic multi-valued wait-free) registers. (1 point)

2. Proving that it is impossible to implement a wait-free 3-consensus object using
only “fail-only”-consensus objects and (MRMW atomic multi-valued wait-free)
registers. (1 point)

13

14

