
© R. Guerraoui 1

Shared Memory Algorithms
(Overview)

Prof R. Guerraoui
Assistants M. Kapalka and M. Vukolic

Distributed Programming Laboratory



2

In short

This course introduces a theory of
robust concurrent computing



3

WARNING

There are many similarities between the master 
course: Selected Topics in Distributed Computing

And the PhD course: Theory of Distributed 
Computing

It does not make sense to take both



4

WARNING

This course is different from the master course : 
Distributed Algorithms

This course is about shared memory whereas the 
other one is about message passing systems

It does make a lot of sense to take both



5

Major chip manufacturers have recently
announced what is perceived as a major 
paradigm shift in computing:

Multiprocessors vs faster processors

May be Moore was wrong…



6

The clock speed of a processor
cannot be increased without
overheating

But

More and more processors can fit in 
the same space



7

Speed will be achieved by having
several processors work on 
independent parts of a task

But

the processors would occasionally
need to pause and synchronize



8

Why synchronize?

But

If the task is indeed common, then 
pure parallelism is usually 
impossible and, at best, inefficient



9

Shared object

Concurrent processes



10

Concurrent computing for 
the masses

Forking processes might become more 
frequent

But

Concurrent accesses to shared objects
might become more problematic



11

Locking (mutual exclusion)

Difficult: 50% of the bugs reported in 
Java come from the use of
« synchronized »

Fragile: a process holding a lock
prevents all others from progressing



12

Locked object

One process at a time



13

Processes are asynchronous

Page faults, pre-emptions, failures, 
cache misses, …

A process can be delayed by millions of
instructions …



14

Alternative to locking?



15

Wait-free atomic objects

Wait-freedom: every process that
invokes an operation eventually returns
from the invocation (robust … unlike
locking)

Atomicity: every operation appears to 
execute instantaneously (as if the
object was locked…)



16

In short

This course shows how to 
wait-free implement high-level
atomic objects out of more
primitive base objects



17Shared object

Concurrent processes



18

This course

Theoretical but no specific theoretic
background

Written exam at the end of the
semester (60%) + seminar (20%) + 
mid-term (20%)



19

Roadmap

Model 
Processes and objects
Atomicity and wait-freedom

Examples
Content



20

Processes

We assume a finite set of processes

Processes are denoted by p1,..pN or p, q, r

Processes have unique identities and know
each other (unless explicitely stated
otherwise)



21

Processes

Processes are sequential units of
computations

Unless explicitely stated otherwise, we 
make no assumption on process 
(relative) speed



22

Processes

p1

p2

p3



23

Processes
A process either executes the algorithm
assigned to it or crashes

A process that crashes does not recover
(in the context of the considered
computation) 

A process that does not crash in a given
execution (computation or run) is called
correct (in that execution)



24

Processes

p1

p2

p3

crash



25

On objects and processes

Processes execute local computation or 
access shared objects through their
operations

Every operation is expected to return a 
reply



26

Processes

p1

p2

p3

operation

operation

operation



27

On objects and processes
Sequentiality means here that, after 
invoking an operation op1 on some 
object O1, a process does not invoke a 
new operation (on the same or on some 
other object) until it receives the reply 
for op1

Remark. Sometimes we talk about 
operations when we should be talking 
about operation invocations



28

Processes

p1

p2

p3

operation

operation

operation



29

Atomicity
We mainly focus in this course on how 
to implement atomic objects 

Atomicity means that every operation 
appears to execute at some indivisible 
point in time (called linearization point) 
between the invocation and reply time 
events



30

Atomicity

p1

p2

p3

operation

operation

operation



31

Atomicity

p1

p2

p3

operation

operation

operation



32

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2

crash



33

Atomicity (the crash case)

p1

p2

p3

operation

operation

operation

p2



34

Atomicity (the crash case)

p1

p2

p3

operation

operation

p2



35

Wait-freedom
We mainly focus in this course on wait-
free implementations

An implementation is wait-free if any 
correct process that invokes an 
operation eventually gets a reply, no 
matter what happens to the other 
processes (crash or very slow)



36

Wait-freedom

p1

p2

p3

operation



37

Wait-freedom
Wait-freedom conveys the robustness 
of the implementation

With a wait-free implementation, a 
process gets replies despite the crash of 
the n-1 other processes 

Note that this precludes 
implementations based on locks 
(mutual exclusion)



38

Wait-freedom

p1

p2

p3

crash

operation

crash



39

Roadmap

Model 
Processes and objects
Atomicity and wait-freedom

Examples
Content



40

Most synchronization primitives 
(problems) can be precisely expressed 
as atomic objects (implementations)

Studying how to ensure robust 
synchronization boils down to studying 
wait-free atomic object implementations 

Motivation



41

Example 1

The reader/writer synchronization 
problem corresponds to the register
object

Basically, the processes need to read or 
write a shared data structure such that 
the value read by a process at a time t, 
is the last value written before t



42

Register

A register has two operations: read()
and write()

We assume that a register contains an 
integer for presentation simplicity, i.e., 
the value stored in the register is an 
integer, denoted by x (initially 0)



43

Sequential specification

Sequential specification

read()

return(x)

write(v)

x <- v; 

return(ok)



44

Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok



45

Atomicity?

p1

p2

p3

write(1) - ok

read() - 2

write(2) - ok



46

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok



47

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

write(2) - ok



48

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 1



49

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0



50

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0



51

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0



52

Atomicity?

p1

p2

p3

write(1) - ok

read() - 0

read() - 0



53

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 0



54

Atomicity?

p1

p2

p3

write(1) - ok

read() - 1

read() - 1



55

Example 2

The producer/consumer synchronization 
problem corresponds to the queue object

Producer processes create items that need 
to be used by consumer processes

An item cannot be consumed by two 
processes and the first item produced is 
the first consumed



56

Queue

A queue has two operations: 
enqueue() and dequeue()

We assume that a queue internally 
maintains a list x which exports 
operation appends() to put an item at the 
end of the list and remove() to remove 
an element from the head of the list



57

Sequential specification

dequeue()

if(x=0) then return(nil);

else return(x.remove())

enqueue(v)

x.append(v);

return(ok)



58

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok



59

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

deq() - x

enq(y) - ok



60

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - y

enq(y) - ok



61

Atomicity?

p1

p2

p3

enq(x) - ok

deq() - x

enq(y) - ok



62

Roadmap

Model 
Processes and objects
Atomicity and wait-freedom

Examples
Content



63

Content

(1) Implementing registers

(2) The power & limitation of registers

(3) Universal objects & synchronization number

(4) The power of time & failure detection

(5) Tolerating failure prone objects 

(6) Anonymous implementations

(7) Transaction memory



64

In short
This course shows how to wait-free
implement high-level atomic
objects out of basic objects

Remark. Unless explicitely stated
otherwise, objects mean atomic objects
and implementations are wait-free


	Shared Memory Algorithms�(Overview)
	WARNING
	WARNING
	Processes

