
© R. Guerraoui 1

Registers

Prof R. Guerraoui
Distributed Programming Laboratory

2

Register

A register has two operations: read()
and write()

Sequential specification

read()

return(x)

write(v)

x <- v; return(ok)

3

Space of registers

Dimension 1: binary (boolean) – multivalued
Dimension 2: safe – regular – atomic
Dimension 3: SRSW – MRSW – MRMW

4

Space of registers

Theorem: A multivalued MRMW atomic
register can be implemented with binary
SRSW safe register

(2 decades of research in distributed
computing)

5

Safe execution

p1

p2

p3

write(1) - ok

read() - 1

read() - 25

6

Regular execution

p1

p2

p3

write(1) - ok

read() - 0

read() - 1

7

Simplifications
We assume that registers contain only
integers

Unless explicitely stated otherwise, registers
are initially supposed to contain 0

The process executing the code is implicitely
assumed to be pi
(we assume a system of N processes)

8

Conventions
Shared registers are denoted Reg
The operations to be implemented are
denoted Read() and Write()
Those of the base registers are denoted
read() and write()
We omit the return(ok) instruction at the
end of Write() implementations

9

From (binary) SRSW safe to
(binary) MRSW safe

Read()
return (Reg[i].read());

We use an array of SRSW registers
Reg[1,..,N]

Write(v)
for j = 1 to N

Reg[j].write(v);

10

The transformation works also for multi-
valued registers and regular ones

It does not however work for atomic
registers

From (binary) SRSW safe to
(binary) MRSW safe

11

From Binary MRSW safe to
Binary MRSW regular

We use one MRSW safe register
Read()

return(Reg.read());

• Write(v)
if old ≠ v then

Reg.write(v);
old := v;

12

The transformation works for single reader
registers

It does not work for multi-valued registers

It does not work for atomic registers

From Binary MRSW safe to
Binary MRSW regular

13

From binary to M-Valued
MRSW regular

Read()
for j = 0 to M

if Reg[j].read() = 1 then return(j)

We use an array of MRSW registers
Reg[0,1,..,M] init to [1,0,..,0]

Write(v)
Reg[v].write(1);
for j=v-1 downto 0

Reg[j].write(0);

14

The transformation would not work if the
Write() would first write 0s and then 1

The transformation works for regular and
atomic registers

From binary to M-Valued
MRSW regular

15

From SRSW regular to
SRSW atomic

Read()
(t’,x’) = Reg.read();
if t’ > t then t:=t’; x:=x’;
return(x)

We use one SRSW register Reg and two
local variables t and x

Write(v)
t := t+1;
Reg.write(v,t);

16

The transformation would not work for
multiple readers

The transformation would not work without
timestamps (variable t representing logical
time)

From SRSW regular to
SRSW atomic

17

From SRSW atomic to
MRSW atomic

We use N*N SRSW atomic registers
RReg[(1,1),(1,2),..,(k,j),..(N,N)] to
communicate among the readers

In RReg[(k,j)] the reader is pk and the
writer is pj

We also use n SRSW atomic registers
WReg[1,..,N] to store new values

the writer in all these is p1
the reader in WReg[k] is pk

18

From SRSW atomic to
MRSW atomic (cont’d)

Write(v)
t1 := t1+1;
for j = 1 to N

WReg.write(v,t1);

19

From SRSW atomic to
MRSW atomic (cont’d)

Read()
for j = 1 to N do

(t[j],x[j]) = RReg[i,j].read();
(t[0],x[0]) = WReg[i].read();
(t,x) := highest(t[..],x[..]);
for j = 1 to N do

RReg[j,i].write(t,x);
return(x)

20

From SRSW atomic to
MRSW atomic (cont’d)

The transformation would not work for
multiple writers

The transformation would not work if the
readers do not communicate (i.e., if a reader
does not write)

21

From MRSW atomic to
MRMW atomic

We use N MRSW atomic registers
Reg[1,..,N]; the writer of Reg[j] is pj

Write(v)
for j = 1 to N do

(t[j],x[j]) = Reg[j].read();
(t,x) := highest(t[..],x[..]);
t := t+1;
Reg[i].write(t,x);

22

From MRSW atomic to
MRMW atomic (cont’d)

Read()
for j = 1 to N do

(t[j],x[j]) = Reg[j].read();
(t,x) := highest(t[..],x[..]);
return(x)

	Registers�

