
Transactional Memory

EPFL, LPD

STiDC’07, 10.XII 2007

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 1 / 23



Introduction

How to Deal with Multi-Threading?

Locks?

Wait-free, atomic objects?

Transactional memory (this lecture)

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 2 / 23



Introduction

A Counter (not thread-safe)

public class Counter {
private int c = 0;

public void inc() {
c := c + 1;

}
public int get() {
return c;

}
}

Counter cnt = new Counter();

cnt.inc();

k := cnt.get();

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 3 / 23



Introduction

A Counter with Locks

public class Counter {
...

synchronized

public void inc() {
c := c + 1;

}
synchronized

public int get() {
return c;

}
}

Counter cnt = new Counter();

cnt.inc();

k := cnt.get();

synchronized(cnt) {
cnt.inc();

k := cnt.get();

}

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 4 / 23



Introduction

Difficult Issues

How to atomically:

1 Fetch & increment 100 counters?

2 Fetch & increment a subset S of 100 counters?

3 Fetch & increment a counter and put the value in a synchronized
hash table?

4 . . .

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 5 / 23



Introduction

Ideal Transactional Memory (1)

public class Counter {
...

@Atomic

public void inc() {
c := c + 1;

}
@Atomic

public int get() {
return c;

}
}

Counter cnt = new Counter();

cnt.inc();

k := cnt.get();

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 6 / 23



Introduction

Ideal Transactional Memory (2)

@Atomic

public class Counter {
...

public void inc() {
c := c + 1;

}

public int get() {
return c;

}
}

Counter cnt = new Counter();

k := incAndGet();

...

@Atomic {
cnt.inc();

return cnt.get();

}

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 7 / 23



Introduction

Multiple Counters

@Atomic {
for(Counter cnt : counters) {

k[i++] := cnt.get();

cnt.inc();

}
}

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 8 / 23



Introduction

Many Objects

@Atomic {
k := cnt.get();

cnt.inc();

table.put(k);

}

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 9 / 23



Implementations

Implementing Transactional Memory

In hardware (e.g., [Herlihy and Moss 93])

In software (library, compiler, VM, etc.). Examples: DSTM
([Herlihy et al. 03]), TL2 ([Dice et al. 06])

Hardware-software hybrids

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 10 / 23



Implementations

Basic Idea

Atomicity = transactions do not observe any concurrency:

Committed transactions: changes applied instantaneously

Aborted transactions: changes never visible to others

Possible implementation of transaction atomicity:

Many transactions can read the same object

Writing requires exclusive ownership

Conflicts⇒ abort some transactions

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 11 / 23



Hardware Transactional Memory

Hardware Transactional Memory

Shared memory

CC protocol

State: non-transactional

CPU 1

cache

State: non-transactional

CPU 2

cache

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1

1

State: non-transactional

CPU 2

cache

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1

1

State: active

CPU 2

cache

tread A→ 1

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1

1

State: aborted

CPU 2

cache

tread A→ 1
twrite A, 2

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1

1

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 2

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1
twrite B, 3

12

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 2

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1
twrite B, 3

12 3

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 2

Shared memory

CC protocol

State: committed

CPU 1

cache

tread A→ 1
twrite B, 3
commit→ true

12 3

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 3

Shared memory

CC protocol

State: committed

CPU 1

cache

tread A→ 1
twrite B, 3
commit→ true

13

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 2

Shared memory

CC protocol

State: committed

CPU 1

cache

tread A→ 1
twrite B, 3
abort

12

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



DSTM

From Hardware TM to Software TM

Example: DSTM

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 13 / 23



DSTM

Thread-Safe Counter using DSTM

TMObject cnt = new TMObject(new Counter());

beginTransaction();

Counter tmp_cnt = cnt.openWrite();

tmp_cnt.inc();

boolean committed = commitTransaction();

beginTransaction();

tmp_cnt = cnt.openRead();

k := tmp_cnt.get();

committed = commitTransaction();

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 14 / 23



DSTM

Thread-Safe Counter using DSTM

TMObject cnt = new TMObject(new Counter());

beginTransaction();

Counter tmp_cnt = cnt.openWrite();

tmp_cnt.inc();

k := tmp_cnt.get();

boolean committed = commitTransaction();

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 15 / 23



DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 16 / 23



DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

Transaction T wants to increment the counter

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 16 / 23



DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

New Locator

old object

new object

transaction
T (active)

Counter (c = 0)

Step 1: Create new locator, clone the counter

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 16 / 23



DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

New Locator

old object

new object

transaction
T (active)

Counter (c = 0)

C&S

Step 2: Compare&Swap TMObject

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 16 / 23



DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

New Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Step 3: Invoke inc() on the new counter

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 16 / 23



DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

New Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Old objects can be eventually garbage collected

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 16 / 23



DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 17 / 23



DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (aborted)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 1: abort transaction T (Compare&Swap on state of T )

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 17 / 23



DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (aborted)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 1: abort transaction T (Compare&Swap on state of T )
⇒ invoke get() on old counter

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 17 / 23



DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 2: wait until T commits or aborts, then:

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 17 / 23



DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (committed)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 2: wait until T commits or aborts, then:
T committed⇒ invoke get() on new counter

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 17 / 23



DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (aborted)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 2: wait until T commits or aborts, then:
T aborted⇒ invoke get() on old counter

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 17 / 23



DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 3: abort transaction T ′

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 17 / 23



DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Which variant to choose? ⇒ contention manager module decides

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 17 / 23



DSTM

Reading Objects

Transaction T wants to read an object:

1 If the object written by an active transaction⇒ resolve conflict

2 Then, two techniques possible:
Visible reads: T adds itself to a shared list of readers (pointed by
the locator)⇒ readers have to write to shared memory (cache!)
Invisible reads (DSTM): T reads the object and remembers locally
the value⇒ writers do not know about readers⇒ need validation

3 Validation: make sure no object previously read has changed (for
n objects read so far, O(n) complexity in DSTM!)

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 18 / 23



DSTM

The Last Steps

T wants to commit:
1 Validate (again!)
2 Change state to “committed” (using C&S)

T wants to abort: change state to “aborted”

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 19 / 23



TL2

From Hardware TM to Software TM

Example: TL2

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 20 / 23



TL2

TL2 – The Idea

Use locks⇒ no copies,
no indirection

Invisible reads

Make validation cheaper:
timestamps

Lock and write to objects only
on commit time

memory address

value mapping

lock + timestamp

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 21 / 23



TL2

The Algorithm (1)

Uses a global version (strong) counter V
Locks are 1-bit values (1 = locked)
Local variables: rver, rset, wver, wset

upon beginTransaction
rver← V .read()

upon write(addr, val)
wset← wset ∪ {(addr, val)}

(Note that this is just a rough approximation of the TL2 algorithm. For
detailed description see [Dice et al. 06])

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 22 / 23



TL2

The Algorithm (2)

upon read(addr)
if addr ∈ wset then return wset[addr].val
(l1, v1)← lockver[addr ]
val← read value from addr
(l2, v2)← lockver[addr ]
if l1 = 1 or l2 = 1 or v1 6= v2 or v2 > rver then abort
rset← rset ∪ {(addr, val)}
return val

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 23 / 23



TL2

The Algorithm (3)

upon commitTransaction
foreach (addr, val) ∈ wset do

try to acquire lock in lockver[addr]
if failed to acquire then abort

wver← V .inc()

if wver 6= rver + 1 then
foreach (addr, val) ∈ rset do

(l , v)← lockver[addr]
if v > rver or l = 1 then abort

foreach (addr, val) ∈ wset do
store val at address addr
lockver[addr]← (0, wver)

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 24 / 23



Further Reading

M. Herlihy, J. E. B. Moss.

Transactional memory: architectural support for lock-free data structures.

In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pp. 289–300, 1993.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.

Software transactional memory for dynamic-sized data structures.

In Proceedings of the 22th Annual ACM Symposium on Principles of
Distributed Computing (PODC’03), pp. 92–101, 2003.

D. Dice, O. Shalev, and N. Shavit.

Transactional locking II.

In Proceedings of the 20th International Symposium on Distributed
Computing (DISC’06), 2006.

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 25 / 23


	Introduction
	Implementations
	Hardware Transactional Memory
	DSTM
	TL2
	

