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Introduction

How to Deal with Multi-Threading?

Locks?

Wait-free, atomic objects?

Transactional memory (this lecture)
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Introduction

A Counter (not thread-safe)

public class Counter {
private int c = 0;

public void inc() {
c := c + 1;

}
public int get() {
return c;

}
}

Counter cnt = new Counter();

cnt.inc();

k := cnt.get();
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Introduction

A Counter with Locks

public class Counter {
...

synchronized

public void inc() {
c := c + 1;

}
synchronized

public int get() {
return c;

}
}

Counter cnt = new Counter();

cnt.inc();

k := cnt.get();

synchronized(cnt) {
cnt.inc();

k := cnt.get();

}
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Introduction

Difficult Issues

How to atomically:

1 Fetch & increment 100 counters?

2 Fetch & increment a subset S of 100 counters?

3 Fetch & increment a counter and put the value in a synchronized
hash table?

4 . . .
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Introduction

Ideal Transactional Memory (1)

public class Counter {
...

@Atomic

public void inc() {
c := c + 1;

}
@Atomic

public int get() {
return c;

}
}

Counter cnt = new Counter();

cnt.inc();

k := cnt.get();
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Introduction

Ideal Transactional Memory (2)

@Atomic

public class Counter {
...

public void inc() {
c := c + 1;

}

public int get() {
return c;

}
}

Counter cnt = new Counter();

k := incAndGet();

...

@Atomic {
cnt.inc();

return cnt.get();

}
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Introduction

Multiple Counters

@Atomic {
for(Counter cnt : counters) {

k[i++] := cnt.get();

cnt.inc();

}
}
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Introduction

Many Objects

@Atomic {
k := cnt.get();

cnt.inc();

table.put(k);

}
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Implementations

Implementing Transactional Memory

In hardware (e.g., [Herlihy and Moss 93])

In software (library, compiler, VM, etc.). Examples: DSTM
([Herlihy et al. 03]), TL2 ([Dice et al. 06])

Hardware-software hybrids
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Implementations

Basic Idea

Atomicity = transactions do not observe any concurrency:

Committed transactions: changes applied instantaneously

Aborted transactions: changes never visible to others

Possible implementation of transaction atomicity:

Many transactions can read the same object

Writing requires exclusive ownership

Conflicts⇒ abort some transactions
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Hardware Transactional Memory

Hardware Transactional Memory

Shared memory

CC protocol

State: non-transactional

CPU 1

cache

State: non-transactional

CPU 2

cache
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Hardware Transactional Memory

Hardware Transactional Memory

A = 1

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1

1

State: non-transactional

CPU 2

cache
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Hardware Transactional Memory

Hardware Transactional Memory

A = 1

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1

1

State: active

CPU 2

cache

tread A→ 1

1
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Hardware Transactional Memory

Hardware Transactional Memory

A = 1

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1

1

State: aborted

CPU 2

cache

tread A→ 1
twrite A, 2

1
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Hardware Transactional Memory

Hardware Transactional Memory

A = 1

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1

1

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1
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Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 2

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1
twrite B, 3

12

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1
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Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 2

Shared memory

CC protocol

State: active

CPU 1

cache

tread A→ 1
twrite B, 3

12 3

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1
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Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 2

Shared memory

CC protocol

State: committed

CPU 1

cache

tread A→ 1
twrite B, 3
commit→ true

12 3

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1
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Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 3

Shared memory

CC protocol

State: committed

CPU 1

cache

tread A→ 1
twrite B, 3
commit→ true

13

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 12 / 23



Hardware Transactional Memory

Hardware Transactional Memory

A = 1B = 2

Shared memory

CC protocol

State: committed

CPU 1

cache

tread A→ 1
twrite B, 3
abort

12

State: non-transactional

CPU 2

cache

tread A→ 1
twrite A, 2
commit→ false

1
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DSTM

From Hardware TM to Software TM

Example: DSTM
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DSTM

Thread-Safe Counter using DSTM

TMObject cnt = new TMObject(new Counter());

beginTransaction();

Counter tmp_cnt = cnt.openWrite();

tmp_cnt.inc();

boolean committed = commitTransaction();

beginTransaction();

tmp_cnt = cnt.openRead();

k := tmp_cnt.get();

committed = commitTransaction();

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 14 / 23



DSTM

Thread-Safe Counter using DSTM

TMObject cnt = new TMObject(new Counter());

beginTransaction();

Counter tmp_cnt = cnt.openWrite();

tmp_cnt.inc();

k := tmp_cnt.get();

boolean committed = commitTransaction();
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DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)
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DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

Transaction T wants to increment the counter
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DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

New Locator

old object

new object

transaction
T (active)

Counter (c = 0)

Step 1: Create new locator, clone the counter
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DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

New Locator

old object

new object

transaction
T (active)

Counter (c = 0)

C&S

Step 2: Compare&Swap TMObject
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DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

New Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Step 3: Invoke inc() on the new counter

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 16 / 23



DSTM

DSTM – The Idea

TMObject

Locator

old object

new object

transaction

Counter (c = 0)

New Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Old objects can be eventually garbage collected
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DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:
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DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (aborted)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 1: abort transaction T (Compare&Swap on state of T )
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DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (aborted)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 1: abort transaction T (Compare&Swap on state of T )
⇒ invoke get() on old counter
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DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 2: wait until T commits or aborts, then:
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DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (committed)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 2: wait until T commits or aborts, then:
T committed⇒ invoke get() on new counter
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DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (aborted)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 2: wait until T commits or aborts, then:
T aborted⇒ invoke get() on old counter
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DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Variant 3: abort transaction T ′
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DSTM

Resolving Conflicts

TMObject

Locator

old object

new object

transaction
T (active)

Counter (c = 1)

Counter (c = 0)

Now another transaction T ′ wants to read the counter⇒ three
possibilities:

Which variant to choose? ⇒ contention manager module decides
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DSTM

Reading Objects

Transaction T wants to read an object:

1 If the object written by an active transaction⇒ resolve conflict

2 Then, two techniques possible:
Visible reads: T adds itself to a shared list of readers (pointed by
the locator)⇒ readers have to write to shared memory (cache!)
Invisible reads (DSTM): T reads the object and remembers locally
the value⇒ writers do not know about readers⇒ need validation

3 Validation: make sure no object previously read has changed (for
n objects read so far, O(n) complexity in DSTM!)
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DSTM

The Last Steps

T wants to commit:
1 Validate (again!)
2 Change state to “committed” (using C&S)

T wants to abort: change state to “aborted”
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TL2

From Hardware TM to Software TM

Example: TL2
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TL2

TL2 – The Idea

Use locks⇒ no copies,
no indirection

Invisible reads

Make validation cheaper:
timestamps

Lock and write to objects only
on commit time

memory address

value mapping

lock + timestamp
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TL2

The Algorithm (1)

Uses a global version (strong) counter V
Locks are 1-bit values (1 = locked)
Local variables: rver, rset, wver, wset

upon beginTransaction
rver← V .read()

upon write(addr, val)
wset← wset ∪ {(addr, val)}

(Note that this is just a rough approximation of the TL2 algorithm. For
detailed description see [Dice et al. 06])
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TL2

The Algorithm (2)

upon read(addr)
if addr ∈ wset then return wset[addr].val
(l1, v1)← lockver[addr ]
val← read value from addr
(l2, v2)← lockver[addr ]
if l1 = 1 or l2 = 1 or v1 6= v2 or v2 > rver then abort
rset← rset ∪ {(addr, val)}
return val

(EPFL, LPD) Transactional Memory STiDC’07, 10.XII 2007 23 / 23



TL2

The Algorithm (3)

upon commitTransaction
foreach (addr, val) ∈ wset do

try to acquire lock in lockver[addr]
if failed to acquire then abort

wver← V .inc()

if wver 6= rver + 1 then
foreach (addr, val) ∈ rset do

(l , v)← lockver[addr]
if v > rver or l = 1 then abort

foreach (addr, val) ∈ wset do
store val at address addr
lockver[addr]← (0, wver)
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Further Reading
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Transactional memory: architectural support for lock-free data structures.

In Proceedings of the 20th Annual International Symposium on
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M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.

Software transactional memory for dynamic-sized data structures.

In Proceedings of the 22th Annual ACM Symposium on Principles of
Distributed Computing (PODC’03), pp. 92–101, 2003.
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Transactional locking II.
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