
1

© R. Guerraoui, M. Vukolic 1

Writing while reading
registers

Marko Vukolic
Distributed Programming Laboratory

2

When readers need to write?

To improve complexity
Reader-writer communication

To facilitate multiple readers (atomic regs)
Reader-reader communication

3

From SRSW regular to
SRSW atomic

Read()
(t’,x’) = Reg.read();
if t’ > t then t:=t’; x:=x’;
return(x)

We use one SRSW register Reg and two
local variables t and x

Write(v)
t := t+1;
Reg.write(v,t);

4

The transformation would not work for
multiple readers

The transformation would not work without
timestamps (variable t representing logical
time)

What is behind these limitations?

From SRSW regular to
SRSW atomic

5

Bound on SWSR atomic
register implementations

Theorem 1:
There is no wait-free algorithm that
implements an (SWSR) atomic register
using a finite number of (SWSR) regular
register that can be written by the writer
(of the atomic register).

I.e., there is no "simple" solution w/o
timestamps – readers need to write!

6

The proof
We assume such an algorithm and show
contradiction
We replace any number of SWSR regular
registers with a single one (w.l.o.g) - reg

w x y z

w x y z

write (v)

v

write (wxvz)

w x v z

read ()

read ()

2

7

The Proof (cont’d)
Consider an execution in which the writer
changes the value of the atomic register
(reg*) from 0 to 1 infinitely many times

Let zeros[i] denote the state of reg after i-th
write of 0 in reg* (before its change to 1)

reg can assume finite number of values ⇒
⇒ there is a value v0 that appears infinitely
many times in zeros[]

8

The Proof (cont’d)
Consider the changes of reg* from 0 to 1,
strating from the state v0 of reg

reg can assume finite number of values ⇒
⇒ there is a value vn that appears infinitely
many times in reg upon changing reg* from
0 to 1

⇒ the state of reg changes infinitely many
times from v0 to vn (when reg* is changed
from 0 to 1)

9

The Proof (cont’d)
Similarily (generalization): There must exist
values v0, v1, … vn, s.t.

(i) v0 is the final value of reg after each of
an infinite number of writes of 0 to reg*
(ii) vn is the final value of reg after each of
an infinite number of writes of 1 to reg*
(iii) ∀i<n: reg is changed infinitely many
times from vi to vi+1 during infinely many
changes of reg* from 0 to 1

10

The Proof (cont’d)

writer

reader

Write(0) Write(1)

reg

… …
write(v1) write(v2) write(vi) write(vn)

v0v1

vi

vivnv0v1v2vivn

Write(0) Write(1)

… …
write(v1) write(v2) write(vi) write(vn)

read() read()
vi

v2…………

Execution 1

11

The Proof (cont’d)

writer

reader

Write(0) Write(1)

reg

…
write(v1) write(v2) write(vi)

vi

read() read()
vi

vi

Execution 2

12

The Proof (cont’d)
There is a minimum i (0<i<=n) such that:

if the reader keeps reading vi, the reader
returns 1
if the reader keeps reading vi-1, the reader
returns 0

3

13

The Proof (end)

writer

reader

Write(0) Write(1)

reg

…
write(v1) write(v2) write(vi)

vi

read() read()
vi

?

vi-1

read() read()
vi-1

Read() -> 1 Read() -> 0

14

The Proof (cont’d)

writer

reader

Write(0) Write(1)

reg

… …
write(v1) write(v2) write(vi) write(vn)

v0v1

vi

vivnv0v1v2vivn

Write(0) Write(1)

… …
write(v1) write(v2) write(vi) write(vn)

read() read()
vi

v2…………

If readers write (and writers read), executions 1 and 2 do not have to be
indistinguishable to the reader. Execution 1 (shown in this slide) has an infinite
no. of writes. We could imagine the algorithm in which the reader writes something
(say a bit) before the first low-level read. This is read by writer at the end of
Write(1). The reader does not change this bit before next Read.

Then, the writer simply writes some aditional bit at the begining of the next change
from 0 to 1. Hence, reader reads this in the second low-level read along with vi.
This makes the reader distinguish execution 1 from execution 2.

15

Summary
The reader needs to write to reduce the
complexity

From unbounded space complexity to a
bounded one
Reader – Writer communication

The (bounded) algorithm will come a bit later

16

From SRSW atomic to
MRSW atomic (cont’d)

Write(v)
t1 := t1+1;
for j = 1 to N

WReg.write(v,t1);

17

From SRSW atomic to
MRSW atomic (cont’d)

Read()
for j = 1 to N do

(t[j],x[j]) = RReg[i,j].read();
(t[0],x[0]) = WReg[i].read();
(t,x) := highest(t[..],x[..]);
for j = 1 to N do

RReg[j,i].write(t,x);
return(x)

18

From SRSW atomic to
MRSW atomic (cont’d)

The transformation would not work for
multiple writers

The transformation would not work if the
readers do not communicate (i.e., if a reader
does not write)

4

19

Bound on SWMR atomic
register implementations

Theorem 2:
There is no wait-free algorithm that
implements a (SWMR) atomic register using
any number of (SWSR) atomic registers that
can be written by the writer (of the SWMR
atomic register).

20

The proof
We assume such an algorithm and show
contradiction

Denote the SWMR register by reg*

We assume 2 readers (p1 and p2)
The writer is pw

We replace all atomic registers read by p1
(resp., p2) by a single one – reg1 (resp., reg2)

As in the proof of Theorem 1

21

The proof (cont’d)
Consider the first write of 1 into reg*

This consists of number of low-level writes w1 to
wk into reg1/reg2

pw

Write(1)

… …

wj+1 wkwjw1

pi

Read() -> vj
i

22

The proof (cont’d)
∀i∈{1,2}, ∃ ji: 1≤ji≤k:

∀j<ji: vj
i=0 and ∀j≥ji: vj

i=1
Observe that j1 does not equal j2

wji must write to regi

pw

Write(1)

… …

wj+1 wkwjw1

pi

Read() -> vj
i

23

The proof (end)
w.l.o.g. assume j1<j2

pw

Write(1)

… …
wj1+1

wkwj1w1

p1

Read() -> 1

p2

Read() -> 0

24

The proof (end)
w.l.o.g. assume j1<j2

pw

Write(1)

… …
wj1+1

wkwj1w1

p1

Read() -> 1

p2

Read() -> 0

If readers write, the proof is simple to break. Assume that the writer writes a
timestamp along the value. The reader p1 would simply writeback the
timestamp/value pair to a dedicated SWSR atomic register read by p2 (as in
the transformation seen in the class).

5

25

Summary
The readers need to write in SWMR wait-free
atomic implementations (out of weaker base
objects)

Applies to implementing SWMR atomic
from any number SWMR regular

We can implement SWMR regular from
SWSR atomic

Even when the available space is
unbounded
Reader – Reader communication

26

From safe bits to an atomic one
We focus on (wait-free) implementing SWSR
atomic bit
Brute force (the reader does not write):
SWSR safe bit to SWSR regular bit

Simple
SWSR regular bit to SWMR regular multivalued

O(N) in space and time
SWMR regular to SWSR atomic

Timestamps (unbounded space)

27

From safe bits to an atomic one

Or try something different
The reader should write!

Aim for O(1) complexity in space and in time

28

How many safe bits?
A single one will not be enough (Theorem 1)

We need at least one in which the reader will
write

Can we do it with only 2 SWSR safe bits?
No…

Assume two bits
V, written by the writer and read by the reader
R, written by the reader and read by the writer

29

2 safe bits are not enough
Write(1)

1
read() read()

1

writer

reader

V=0

Read()

read()
1 0

read() read()
0

Read()

read()
0

Write(0)

Read()->1

Writer must change something!
Cannot change R must change V

After Write(1) V must equal 1
Assuming that the initial value is 0
Dual if the initial value is 1

After Write(0) V must equal 0

Read()->0

30

2 safe bits are not enough
Write(1)

write(1) (into V)

1
read() read()

1

writer

reader

V=0

Read()

read()
1 0

read() read()
0

Read()

read()
0

The proof holds regardless of the number of bits
in which the reader writes
The writer needs (at least) 2 bits for himself

6

31

3 bits are enough
(Tromp’s algorithm)

2 bits owned (written) by the writer
V (for a value) and W (control flag)

1 bit owned by the reader (R – control flag)
When the writer (resp., reader) executes:

If W=R then { … }
We mean:

1) r:=read R (resp., w:=read W)
2) if (W=r) then (resp., if w=R then)

r (resp., w) is a local variable
A copy of W (resp., R) is also stored localy

32

Tromp’s algorithm
• Write(v)
0: if old ≠ v then
1: change V;
2: if W=R then
3: change W;
4: old:=v

33

Tromp’s algorithm
• Write(v)
(0: if old ≠ v then)
1: change V;
2: if W=R then
3: change W;
(4: old:=v)

34

Tromp’s algorithm
• Write(v)
1: change V;
2: if W=R then
3: change W;

• Read()
1: if W=R then return v
2: x := read V
3: if W≠R then change R
4: v := read V
5: if W=R then return v
6: v := read V
7: return x

- Handshaking
W≠R ⇔ there is a new value
W=R ⇔ no new values

35

Correctness
Liveness – straigthforward

Safety – a bit more difficult

We first prove regularity
Read-Write linearizability

Then we show that a later Read never returns
an older value than some preceding Read

Read-Read linearizability

36

Correctness - Regularity
2 cases:

A Read is concurrent with some Write
Simple: left as an exercise

A Read is not concurrent with any Write
Proved here

7

37

Correctness - Regularity (cont’d)
Assume the Read r is not concurrent with any
Write
Let w be the last complete Write preceding the
Read writing the bit b

If r returns in line 5 or 7 then the returned
value has been read during r

By safety of V, r returns b

38

Correctness - Regularity (cont’d)
If r returns in line 1

then the reader saw W=R (in line 1)
Before completing w, the writer made W≠R
There was a Read r’ (s.t. r’ precedes r) that
completed change R after the read of R in w started

Otherwise, the writer would again make W≠R
i.e., r’ completed change R after change V in w
completed w = Write(b)

r’ r
writer

reader

change V
read R

(if W=R)

change R

39

Correctness - Regularity (cont’d)
If r returns in line 1

then the reader saw W=R (in line 1)
Before completing w, the writer made W≠R
There was a Read r’ (s.t. r’ precedes r) that changed
R after the read of R in w started

Otherwise, the writer would again make W≠R
i.e., r’ changed R after change V in w completed
Let r’ be the first such Read

In line 4 of r’ reader reads v:=b (by safety of V)
All subsequent Reads read v=b (including r) until
another Write is invoked

40

Read-read linearizability
Lemma: If Read r1 precedes r2 and ri returns
the value written by the Write vi (i=1..2), then

v1=v2 or v1 precedes v2
Proof: Suppose v2 precedes v1 (*)
r1 does not return the initial value (no Write
precedes the initial Write)
r2 returns some value read by some low-level
read from V

Otherwise r2 returns the same value as r1
(the initial value)

See line 1 of reader’s code

41

Read-read linearizability (cont’d)
Let ρi be the read from V returned by ri (i=1..2)
Claim 1: ρ1 precedes ρ2 (ρ1→ρ2)

∀i ∈ {1,2}: ρi∈ri or ρi is belong to some read
that precedes ri
If ρ2∈r2 Claim 1 is trivial (since r1→r2)
If ρ2∉r2, r2 returns in line 1 and ρ2 is the
latest v := read V (in line 4 or 6) that
precedes r2

42

Read-read linearizability (cont’d)
Claim 1 (cont’d): ρ1 precedes ρ2 (ρ1→ρ2)

It is not possible that ρ2→ρ1
Observe that ρ1≠ρ2 by (*)
If ρ2→r1 then r1 does not change v

r1 returns in line 1 and ρ1=ρ2
If ρ2∈r1

ρ1 is a read V in line 2 or 4 of r1, or
some earlier read, while
ρ2 is a read V in line 4 or 6 of r1

Hence (by (*)) ρ1→ρ2!

8

43

Read-read linearizability (cont’d)
Claim 2: there is a change V operation by
writer that started before ρ1 finished and
finished after ρ2 started

writer

reader

change VV=b

ρ1 ρ2

44

Read-read linearizability (cont’d)
Claim 3: Every read W operation (lines 1,3,5)
by the reader between ρ1 and ρ2 returns the
same value
Proof: the writer is busy changing V (Claim 2)

writer

reader

change VV=b

ρ1 ρ2

45

Read-read linearizability (cont’d)
There are 3 exhaustive cases
(i) ρ1 is x := read V (line 2)

ρ1∈r1 and r1 returns in line 7 (**)
2 subcases:

(a) ρ2 is the read in line 4 of r1
Then r1 does not execute line 6
r1 returns in line 5 (contradicts (**))!

(b) ρ2 is some later read
By Claim 3, W=R in line 5 of r1
r1 returns in line 5 (contradicts (**))!

46

Read-read linearizability (cont’d)
There are 3 exhaustive cases
(ii) ρ1 is v := read V (line 4)

r1 must return in line 5
After finding W=R

By Claim 3, W is not changed before ρ2 (i.e.,
some read V) is invoked
But there is no subsequent read of V, (nor
change of R), before W≠R (line 1)

i.e., there is no new read of v before W is
changed ⇒ ρ1=ρ2 – a contradiction w.
Claim 1, (*)

47

Read-read linearizability (end)
There are 3 exhaustive cases
(iii) ρ1 is v := read V (line 6)

r1 is a subsequent read that returns in line 1
Otherwise v is overwritten in line 4
r1 finds W=R in line 1

By Claim 3, W is not changed before ρ2 (i.e.,
some read V) is invoked
But there is no subsequent read of V, (nor
change of R), before W≠R (line 1)

i.e., as in case (ii) ⇒ ρ1=ρ2 – a
contradiction w. Claim 1, (*) 48

Tromp’s algorithm
• Write(v)
1: change V;
2: if W=R then
3: change W;

• Read()
1: if W=R then return v
2: x := read V
3: if W≠R then change R
4: v := read V
5: if W=R then return v
6: v := read V
7: return x

- Handshaking
W≠R ⇔ there is a new value
W=R ⇔ no new values

9

49

Condition in line 3?
There are 3 exhaustive cases
(i) ρ1 is x := read V (line 2)

ρ1∈r1 and r1 returns in line 7 (**)
2 subcases:

(a) ρ2 is the read in line 4 of r1
Then r1 does not execute line 6
r1 returns in line 5 (contradicts (**))!

(b) ρ2 is some later read
By Claim 3, W=R in line 5 of r1
r1 returns in line 5 (contradicts (**))!

50

Condition in line 3?

writer

reader

change V

Write(1)

change W

R=0

Read()->1

R=1

Read()->0

W=0

Write(0)

change V = writeV(0)

R=0 W<>R

x=0 v=1 v=1

W<>R

Read()->1

x=1

R=1

v=1

V=1 W=1

W=R

V=0
W=0

R=0

line 2line 1 line 3

W=R

line 1 line 2

line 3

line 4

line 5

line 6

line 1

line 2

line 3

line 4

line 5

Would not be changed in case
there was a condition in line 3

51

Exercise
• Write(v)
1: change V;
2: if W=R then
3: change W;

• Read()
1: if W=R then return v
2: x := read V
3: if W≠R then change R
4: v := read V
5: if W=R then return v
6: v := read V
7: return x

- Handshaking
W≠R ⇔ there is a new value
W=R ⇔ no new values

52

Removing line 6?

writer

reader

change V

Write(1)

change W

R=0

Read()->0

W=0

Write(0)

change V = writeV(0)

W<>R

x=0 v=1

W=R

Read()->1

V=1 W=1V=0
W=0

R=0

line 2line 1 line 3

W=R

line 1 line 2 line 4

line 1
W=R=1

line 5

R=1
change W

W=1
line 1

W=0
line 5

W=R

W=1

line 3

Read()->1

R=1

53

Removing line 6?

writer

reader

change V

Write(1)

change W

R=0

Read()->0

W=1

Write(0)

change V = writeV(0)

W<>R

x=0 v=1

W=R

Read()->1

V=1 W=1V=0
W=0

R=0

line 2line 1 line 3

W=R

line 1 line 2 line 4

line 1
W=R=1

(change R) line 5

R=1
change W

W=1
line 1

W=0
line 5

W=R

W=1

line 3

