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Review 

Space of registers: 

– Dimension 1: binary vs. multivalued 

– Dimension 2: safe vs. regular vs. atomic 

– Dimension 3: SRSW vs. MRSW vs. MRMW 

Review 
Transformations: 

–  binary SRSW safe --> binary MRSW safe 

–  binary MRSW safe --> binary MRSW regular 

–  binary MRSW regular --> multival MRSW regular 

–  multival SRSW regular --> multival SRSW atomic 

–  multival SRSW atomic --> multival MRSW atomic 

–  multival MRSW atomic --> multival MRSW atomic 

Review 
Space of registers: 

– Dimension 1: number of values 
binary vs. multivalued 

– Dimension 2: consistency 
safe vs. regular vs. atomic 

– Dimension 3: # readers, # writers 
SRSW vs. MRSW vs. MRMW 

– Dimension 4: modes of failure 
none vs. responsive vs. non-responsive 
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Review 
•  Algorithm 1: implement SWMR register 

out of t+1 SWMR responsive failure-
prone registers. 

•  Algorithm 2: implement SWSR register 
out of 2t+1 SWSR non-responsive fault-
prone registers. 

Today 
•  New mode of failure: NR-Arbitrary 

– NR = non-responsive 
A failed register may or may not respond to a read 
or write request. 

– Arbitrary = Byzantine 
A failed register can return any value: a real value, 
a fake value. 

•  We think of the register as controlled by 
a malicious adversary. 

Fault-Prone Registers 
•  Example: Storage Area Network (SAN) 

– Networked storage available for storing large 
amount of data reliably. 

– SAN consists of a large array of hard-drives. 
–  In order to store and retrieve data, servers 

send requests to the SAN. 
– When a hard-drive fails, it may crash, or it 

may return invalid (corrupted) data. 

•  See IBM TotalStorage SAN256B 

Fault-Prone Registers 
•  Basic Model: 

– Registers x1, ..., xn 
– When a process wants to read a register xj, 

it does: 
INVOKE read/write xj 

–  If the register is correct, it does: 
(for a write:) RESPOND xj  
(for a read:)   RESPOND xj v 

–  If the register is faulty, it may or may not 
respond, and the response may be bad. 
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Our Goal 
•  Given: 

– n components (registers) prone to NR-
Arbitrary failures 

– at most t < n/3 failures 

•  Construct: 
– a reliable, fault-free object (register)   

Recall 
•  Safe Register: 

– Every complete read operation that does not 
overlap any write operation returns the value 
of the last write operation.  Otherwise, the 
read operation returns an arbitrary value. 

•  Regular Register: 
– Every complete read operation returns the 

value of the last preceding write operation or 
a current write operation. 

Termination 
•  Wait-freedom: 

– Every operation eventually terminates. 

Termination 
•  Wait-freedom: 

– Every operation eventually terminates. 

•  Finite-Writes (FW)-Termination 
– All write operations complete. 
–  In every execution with only a finite number 

of write operations, every read operation 
terminates. 
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FW-Termination 
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FW-Termination 
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Write Write Write 

Basic Algorithm 
•  Assume 5t+1 registers. 

•  At most t are NR-Arbitrary faulty. 

•  Goal: SWSR safe register 

Basic Algorithm 
•  Writer’s state: 

–  ts : timestamp 
– val : value 

•  Write(v) : 
1.  ts <-- ts+1 
2.  invoke write (ts, v) on all registers 
3.  on receiving (4t+1) responses, return ack. 
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Basic Algorithm 
•  Read() 

1.  invoke read on all registers 
2.  On receiving (4t+1) responses: 

a)  If any (ts,val) pair is returned by at least (2t+1) 
of registers, then return the val with the largest 
timestamp (that is returned by at least 2t+1 
registers). 

b)  Otherwise, return default value v0 

Basic Algorithm 
•  Termination: at most t faulty, hence 

always get enough responses. 

Basic Algorithm 
•  Safety: 

– Consider a read operation that does not 
overlap with any write operations. 

– Let (ts, val) be the last thing written prior to 
the Read() operation. 

– Write(val) received responses from 4t+1 
registers. 

– Thus, at least 3t+1 correct registers have 
(ts,val). 

Basic Algorithm 
•  Safety (cont.): 

–  The Read() receives responses from 4t+1 registers. 
–  The (4t+1) read-set intersects the (3t+1) write-set 

in at least 2t+1 registers. 
–  Thus, the Read() receives (ts,val). 
–  At most t correct processes are not in the write-set. 
–  At most t processes are NR-Arbitrary. 
–  Hence, at most 2t returns a value not (ts, val). 
–  Thus, the Read() returns (ts, val) as desired. 
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Robustness 
•  We assumed n > 5t?? 

•  Why? 
– Needed a lot of intersection to ensure correct 

processes win. 

•  But: we only need n > 3t! 

Today 
•  Two Algorithms: 

– Algorithm 1: Construct a FW-terminating 
MRSW regular register from n SWMR FW-
Terminating regular registers of which up to  
t < n/3 may have NR-Arbitrary failures. 

– Algorithm 2: Construct a wait-free MRSW 
safe register out of n MRSW wait-free safe 
registers, up to t<n/3 may have NR-Arbitrary 
failures. 

Lower Bounds 
•  Theorem: 

–  It is impossible to implement a safe, wait-
free register if t ≥ n/3. 

Lower Bounds 
•  Theorem: 

– To implement a t-tolerant FW-terminating 
SWSR binary safe register, a WRITE 
operation requires at least two consecutive 
write invocations on the same correct base 
object. 

•  A Write() requires two rounds!  
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Lower Bounds 
•  Theorem: 

– To implement a t-tolerant SWSR safe register 
when the READ() does not invoke write 
operations, a READ() operation requires at 
least t+1 rounds of read invocations. 

•  A Read() requires at least t+1 rounds!  

Algorithm 1 
•  Given: 

– n MRSW FW-terminating regular registers     
x1, x2, …, xn 

–  t NR-Arbitrary failures. 

•  Construct: 
– MRSW FW-terminating regular register 

Writer’s Algorithm 
•  Writer maintains timestamp ts. 
•  With every write, the timestamp is 

incremented.  There is a unique 
timestamp associated with each value. 

•  TSVal = [timestamp, value] 

Writer’s Algorithm 
•  Writer’s state: 

– pw: TSVal (pre-write value) 
– w: TSVal (write value) 

•  Two phase algorithm: 
1.  Write new TSVal to pw. 
2.  Write new TSVal to w. 

•  Each phase contacts at least (n-t) 
registers, at least t+1 of which are 
correct. 
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Writer’s Algorithm 

Registers: x1, x2, …, xn 

Perform_Write(pw, w) 

 for 1 ≤ i ≤ n do 
  if (enabled[i] and not pending[i]) then 
   enabled[i] <-- false 

   pending[i] <-- true 

   INVOKE write(xi, <pw, w>) 

  if (xi RESPONDED) then 

   pending[i] <-- false 

Writer’s Algorithm 

Registers: x1, x2, …, xn 

Write(v) 

 ts <-- ts+1 

 pw <-- [ts, v] 

 for 1 ≤ i ≤ n do enabled[i] <-- true 

 while |{i : not enabled[i]}| ≥ n-t 
  Perform_Write(pw, w)  

 w <-- [ts, v] 

 for 1 ≤ i ≤ n do enabled[i] <-- true 

 while |{i : not enabled[i]}| ≥ n-t 
  Perform_Write(pw, w)  

Reader’s Algorithm 
•  Repeatedly read (n-t) registers. 
•  A value is safe if it is read from at least   

t+1 registers. 
– At least one register must be correct. 
– Thus, the value was written by some write 

operation. 

•  Return the safe value with the highest 
timestamp. 

Reader’s Algorithm 

Perform_Read() 

 for 1 ≤ i ≤ n do 

  if (enabled[i] and not pending[i]) then 

   enabled[i] <-- false 

   pending[i] <-- true 

   old[i] <-- false 

   INVOKE read (xi) 

  if (xi RESPONDED [a,b]) then 

   pending[i] <-- false 

   if not old[i] then 

         pw[i] <-- a 

         w[i] <-- b 

   old[i] <-- false 
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Reader’s Algorithm 

Read() 

 for 1 ≤ i ≤ n do old[i] <-- true 

 for 1 ≤ i ≤ n do pw[i] <-- NIL 

 for 1 ≤ i ≤ n do w[i] <-- NIL 

 Repeat   

  for 1 ≤ i ≤ n do enabled[i] <-- true 

  while |{i : not enabled[i]}| ≥ n-t 
   Perform_Read() 
  C <-- {c : safe(c) and highestValid(c) } 

 until C ≠ {} 

 return c.val : c in C  

Reader’s Algorithm 
•  safe (c) : 

– There exists a set of registers P where: 
• |P| ≥ t+1  
• For every j in P, either: 

– pw[j] = c 
– w[j] = c 

–  Implies that at least t+1 registers responded 
with value c for either of [a, b]. 

Reader’s Algorithm 
•  invalid (c) : 

– There exists some c’ where either: 
• c’.ts < c.ts  
• c’.ts = c.ts and c.val ≠ c’.val 

– There exists a set of registers P where: 
• |P| ≥ 2t+1  
• For every j in P, either: 

– pw[j] = c’ 
– w[j] = c’ 

–  Implies that 2t+1 processes vote against c. 

Reader’s Algorithm 
•  highestValue (c) : 

– For all c’ in pw[*] or w[*] where: 
•  c’.ts ≥ c.ts 
•  c’ ≠ c 

– Then invalid(c’). 

–  Implies that every larger timestamp is 
invalid, i.e., is voted against by at least 2t+1 
processes. 
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Regularity 
•  Lemma 1: If c is safe, then there is some 

Write(v) operation where v = c.val. 

•  Proof: If c is safe, then it was returned by 
at least t+1 registers, at most t of which 
can be failed. 

Regularity 
•  Lemma 2: If some Write(v) operation 

completes and writes c = [ts, v], then c is 
not invalid. 

•  Proof: After the Write(v) operation completes, 
there are at most t registers such that xi ≠ c, i.e., 
at most t where xi has a TSVal with timestamp < 
ts.  And there are at most t faulty registers.  Thus, 
there are never 2t+1 votes against c. 

Regularity 
•  Theorem 3: The emulated register is regular. 
•  Proof: 

–  Consider a Read() operation that has concurrent write 
operations. 

–  Assume that it returns some value v, associated with 
some TSVal c = [ts, v]. 

–  We know that c is safe, so by Lemma 1, some Write(v) 
wrote [ts, v]. 

–  Let c’ = [ts’, v’] be the TSVal written by the Write(.) 
operation immediately preceding the Read() operation. 

Regularity 
•  Proof (continued): 

–  Goal: show that (ts ≥ ts’).  Assume not. 
–  Since the Write(v’) of c’ completed, there are at least 

n-t registers with timestamp ≥ ts’. 
–  The Read() operation accesses at least 2t+1 

registers. 
–  Thus there is some correct register that has 

timestamp ≥ ts’ and is accessed by the Read() 
operation.   

–  Let xj be the correct process with the smallest TSVal 
cj = [tsj, vj] with tsj ≥ ts’ that responds to the 
Read(). 
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Regularity 
•  Proof (continued): 

–  Since tsj ≥ ts’ > ts, we know that if cj is not invalid, 
then c = [ts, v] cannot be highestValid.  So assume 
cj is invalid. 

–  Thus, there are 2t+1 registers that “vote against” cj, 
i.e., that have timestamps < tsj or have different 
values and respond to the Read(). 

–  One of these registers xk must have been correct 
and also one of the n-t contacted by Write(v’), so: 
•  tsk ≤ tsj, since it “votes against” cj 
•  tsk ≥ ts’, since it is contacted during Write(v’)  

–  Since cj is the smallest ≥ ts’, tsk = tsj.   

Regularity 
•  Proof (continued): 

–  Since xk “voted against” cj, but tsk=tsj, we can 
conclude that vk ≠ vj. 

–  But both registers xk and xj are correct. 
–  But you can’t have two different values associated 

with the same timestamp!  Contradiction! 

QED  

FW-Terminating 
•  Theorem 4: The algorithm guarantees 

FW-termination. 
•  Proof: 

–  Easy to see that writes terminate, since at most t 
faulty registers. 

–  Easy to see that reads never get stuck waiting for 
responses, since at most t faulty registers. 

–  Hard part: show that in a FW execution, eventually 
there is a c that is safe and highestValid. 

FW-Terminating 
•  Proof (continued): 

–  Assume only a finite number of write operations. 
–  Assume some Read() operation never terminates. 
–  Let T be the point after which no new Write 

operations are invoked and after all write operations 
invoked in the low-level registers are complete. 

–  Let T’ > T, be the point after which every correct 
register has responded to at least one read 
invocation after time T. 
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FW-Terminating 
•  Proof (continued): 

–  Let [ts, v] be the TSVal written in the very last 
complete Write invocation in the execution. 

–  Case 1 : no (incomplete) Write completes the pre-
write phase after [ts, v].   

•  Then (ts,v) appears in at least t+1 registers w[*], and is 
safe.  And by Lemma 2, (ts, v) is not invalid.   

•  And the incomplete write is invalid, since the 2t+1 correct 
nodes “vote against” the incomplete write, since they each 
have w[*] field ≤ ts.   

•  Thus, (ts,v) is in C. 

FW-Terminating 
•  Proof (continued): 

–  Let [ts, v] be the TSVal written in the very last 
complete Write invocation in the execution. 

–  Case 2 : some (incomplete) Write completes the pre-
write phase after [ts, v] with [ts’, v’].  

•  Choose largest such (ts’, v’).  
•  Then (ts’,v’) appears in at least t+1 registers pw[*], and is 

safe.  And by Lemma 2, (ts’, v’) is not invalid.   
•  And any other larger write is invalid, since the 2t+1 correct 

nodes “vote against” the larger write, since they each have 
w[*] field ≤ ts’.   

•  Thus, (ts’,v’) is in C. 

QED 

Algorithm 2 
•  Given: 

– n MRSW wait-free safe registers 
– < t failures 
–  t < n/3 

•  Construct: 
– Wait-free safe register 
–  (Bounded number of iterations for each op.) 

Algorithm 2 
•  Write(v) :  

– Same as Algorithm 1. 
– Two phase operation: 

1.  Increment timestamp ts := ts+1 
2.  Prewrite pw = [ts, v] to n-t registers 
3.  Write w = [ts, v] to n-t registers 
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Reader’s Algorithm 
•  Repeatedly read registers: 

–  If 2t+1 registers reject a value (i.e., return 
some other value), then we continue. 

– Otherwise, we choose the value with the 
highest timestamp that is safe.  

Reader’s Algorithm 
•  Variables: 

–  ReadW(v) : set of registers j that returned v for w[j] 
–  ReadPW(v) : set of registers j that returned v for 

pw[j] 
–  prevReadW(v) : snapshot of ReadW at the beginning 

of the current iteration. 
–  Responded : set of processes that have responded 

at some point during the Read() operation. 
–  C : set of candidate values 

Reader’s Algorithm 

Perform_Read() 

 for 1 ≤ i ≤ n do 

  if (enabled[i] and not pending[i]) then 

   enabled[i] <-- false 

   pending[i] <-- true 

   old[i] <-- false 

   INVOKE read (xi) 

  if (xi RESPONDED [a,b]) then 

   pending[i] <-- false 

   if not old[i] then 

         ReadPW(a) <-- ReadPW(a) \/ {i} 

         ReadW(b) <-- ReadW(b) \/ {j] 

   old[i] <-- false 

Reader’s Algorithm 

Read() (Part 1) 

 for 1 ≤ i ≤ n do old[i] <-- true 

 for all v : ReadW(v), ReadPW(v) <-- NIL 

 %% Round 1 %%   
 for 1 ≤ i ≤ n do enabled[i] <-- true 

 Repeat   

   Perform_Read() 

 until |{i : not (enabled[i] and pending[i])}| ≥ n-t 

 C <-- {v : |Responded – ReadW(v)| < 2t+1} 
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Reader’s Algorithm 

Read() (Part 2) 

 %% Rounds 2, ... %%   

 while C ≠ 0 and there is no c in C such that: 

  highCand(c) and safe(c)  

 do 

  for 1 ≤ i ≤ n do enabled[i] <-- true 

  prevReadW <-- ReadW 

  Repeat  Perform_Read() 

  until |{i : not (enabled[i] and pending[i])}| ≥ n-t 

   and for all c in C : either safe(c) or 

   |Responded – prevReadW(c)| ≥ n-t 

  C <-- {v in C : |Responded – ReadW(v)| < 2t+1} 

Reader’s Algorithm 

Read() (Part 3) 

 %% Return value %%   

 if C not empty then 

  return c.val : highCand(c) and safe(c) 

 else 

  return v0 

Reader’s Algorithm 
•  Definitions: 

– highCand(c) : if c = [ts, v], then every 
candidate c’ in C has a timestamp that is ≤ ts 

– safe(c) : at least t+1 registers have returned 
a candidate value equal to c, or with a 
timestamp > c.ts. 

Note: timestamps larger than c.ts are okay, since 
we only care that the register is safe, and a larger 
timestamp may indicate a concurernt write.  

Safety 
•  Theorem: The register is safe. 
•  Proof: 

–  Let R be a read invocation, and assume that there are no 
concurrent Write(.) ops. 

–  Let [ts, v] be the TSVal written by the immediately preceding 
write operation. 

–  Throughout R : 
1.  At least t+1 correct registers have [ts, v]. 
2.  At most 2t registers respond without [ts, v]: t that are 

uninformed and t that are failed. 
–  Thus, Responded – ReadW < 2t+1, so [ts, v] in C, and never 

excluded later. 
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Safety 
•  Theorem: The register is safe. 
•  Proof: 

–  Need to show that no c’=[ts’, v’] can be highCand and safe. 
–  Assume c’ is highCand, i.e., ts’ > ts.  There are at most t 

registers that can returns c’, or any timestamp >ts, so c’ is not 
safe. 

–  So, we conclude that the value returned is v. 

Wait-freedom 
•  Theorem: Algorithm 2 is wait-free. 
•  Proof: 

–  Clearly, every write operation completes. 
–  Consider a read operation R. 
–  We show:  

•  The set C is updated at most t+1 times. 
•  Each time C is updated, each candidate c gains at least one 

supporter. 
•  Thus, at the end, either C is empty or each candidate has t

+1 supporters and the algorithm terminates. 

Wait-freedom 
•  Proof (continued): 

–  First, it is clear that R is not blocked by waiting for n-t 
responses. 

–  It is also not blocked by waiting for: 
•  for all c in C : safe(c) or |Responded – prevReadW(c)| ≥ n-t 
•  Fix a c. 
•  We know that prevReadW(c) is not empty. 
•  If at least one j in prevReadW(c) is correct, then we know 

that c was pre-written to t+1 correct registers.  These 
registers hold timestamps that are strictly increasing, so 
eventually c is safe. 

•  If all the registers in prevReadW(c) are faulty, then n-t 
correct processes did are not in prevReadW(c).  Eventually, 
every correct process responds, so there are n-t processes 
in Respnded and not in prevReadW(c). 

Wait-freedom 
•  Proof (continued): 

–  Now consider each iteration of the while loop: 
while C ≠ 0 and there is no c in C such that highCand(c) and safe(c) 

–  If C is empty, then done. 
–  Fix some c in C. 
–  At the end of the Perform_Read loop, either safe(c) or at least n-t 

new Respondents not in prevReadW are found. 
–  If none of the n-t new respondents have candidate c, then c is 

removed from C (since n-t voted against it). 
–  Thus, at least 1 new respondents returns c, and thus ReadW is bigger 

than prevReadW. 
–  After t+1 iterations, either c is removed from C, or c is safe. 
–  Thus, highCand(c) is safe. 
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Summary 
•  Two Algorithms: 

–  Implement SWMR regular register 
guaranteeing FW-termination. 

–  Implement SWMR safe register guaranteeing 
wait-freedom. 

– Both rely on carefully collecting enough 
information to verify that the failures don’t 
compromise the data. 


