
12/15/08

1

Constructing Reliable Registers From
Unreliable Byzantine Components

Seth Gilbert

© S. Gilbert

Review

Space of registers:

– Dimension 1: binary vs. multivalued

– Dimension 2: safe vs. regular vs. atomic

– Dimension 3: SRSW vs. MRSW vs. MRMW

Review
Transformations:

–  binary SRSW safe --> binary MRSW safe

–  binary MRSW safe --> binary MRSW regular

–  binary MRSW regular --> multival MRSW regular

–  multival SRSW regular --> multival SRSW atomic

–  multival SRSW atomic --> multival MRSW atomic

–  multival MRSW atomic --> multival MRSW atomic

Review
Space of registers:

– Dimension 1: number of values
binary vs. multivalued

– Dimension 2: consistency
safe vs. regular vs. atomic

– Dimension 3: # readers, # writers
SRSW vs. MRSW vs. MRMW

– Dimension 4: modes of failure
none vs. responsive vs. non-responsive

12/15/08

2

Review
•  Algorithm 1: implement SWMR register

out of t+1 SWMR responsive failure-
prone registers.

•  Algorithm 2: implement SWSR register
out of 2t+1 SWSR non-responsive fault-
prone registers.

Today
•  New mode of failure: NR-Arbitrary

– NR = non-responsive
A failed register may or may not respond to a read
or write request.

– Arbitrary = Byzantine
A failed register can return any value: a real value,
a fake value.

•  We think of the register as controlled by
a malicious adversary.

Fault-Prone Registers
•  Example: Storage Area Network (SAN)

– Networked storage available for storing large
amount of data reliably.

– SAN consists of a large array of hard-drives.
–  In order to store and retrieve data, servers

send requests to the SAN.
– When a hard-drive fails, it may crash, or it

may return invalid (corrupted) data.

•  See IBM TotalStorage SAN256B

Fault-Prone Registers
•  Basic Model:

– Registers x1, ..., xn
– When a process wants to read a register xj,

it does:
INVOKE read/write xj

–  If the register is correct, it does:
(for a write:) RESPOND xj
(for a read:) RESPOND xj v

–  If the register is faulty, it may or may not
respond, and the response may be bad.

12/15/08

3

Our Goal
•  Given:

– n components (registers) prone to NR-
Arbitrary failures

– at most t < n/3 failures

•  Construct:
– a reliable, fault-free object (register)

Recall
•  Safe Register:

– Every complete read operation that does not
overlap any write operation returns the value
of the last write operation. Otherwise, the
read operation returns an arbitrary value.

•  Regular Register:
– Every complete read operation returns the

value of the last preceding write operation or
a current write operation.

Termination
•  Wait-freedom:

– Every operation eventually terminates.

Termination
•  Wait-freedom:

– Every operation eventually terminates.

•  Finite-Writes (FW)-Termination
– All write operations complete.
–  In every execution with only a finite number

of write operations, every read operation
terminates.

12/15/08

4

FW-Termination

p1

p2

Read

Write Write Write Write Write Write

FW-Termination

p1

p2

Read

Write Write Write

Basic Algorithm
•  Assume 5t+1 registers.

•  At most t are NR-Arbitrary faulty.

•  Goal: SWSR safe register

Basic Algorithm
•  Writer’s state:

–  ts : timestamp
– val : value

•  Write(v) :
1.  ts <-- ts+1
2.  invoke write (ts, v) on all registers
3.  on receiving (4t+1) responses, return ack.

12/15/08

5

Basic Algorithm
•  Read()

1.  invoke read on all registers
2.  On receiving (4t+1) responses:

a)  If any (ts,val) pair is returned by at least (2t+1)
of registers, then return the val with the largest
timestamp (that is returned by at least 2t+1
registers).

b)  Otherwise, return default value v0

Basic Algorithm
•  Termination: at most t faulty, hence

always get enough responses.

Basic Algorithm
•  Safety:

– Consider a read operation that does not
overlap with any write operations.

– Let (ts, val) be the last thing written prior to
the Read() operation.

– Write(val) received responses from 4t+1
registers.

– Thus, at least 3t+1 correct registers have
(ts,val).

Basic Algorithm
•  Safety (cont.):

–  The Read() receives responses from 4t+1 registers.
–  The (4t+1) read-set intersects the (3t+1) write-set

in at least 2t+1 registers.
–  Thus, the Read() receives (ts,val).
–  At most t correct processes are not in the write-set.
–  At most t processes are NR-Arbitrary.
–  Hence, at most 2t returns a value not (ts, val).
–  Thus, the Read() returns (ts, val) as desired.

12/15/08

6

Robustness
•  We assumed n > 5t??

•  Why?
– Needed a lot of intersection to ensure correct

processes win.

•  But: we only need n > 3t!

Today
•  Two Algorithms:

– Algorithm 1: Construct a FW-terminating
MRSW regular register from n SWMR FW-
Terminating regular registers of which up to
t < n/3 may have NR-Arbitrary failures.

– Algorithm 2: Construct a wait-free MRSW
safe register out of n MRSW wait-free safe
registers, up to t<n/3 may have NR-Arbitrary
failures.

Lower Bounds
•  Theorem:

–  It is impossible to implement a safe, wait-
free register if t ≥ n/3.

Lower Bounds
•  Theorem:

– To implement a t-tolerant FW-terminating
SWSR binary safe register, a WRITE
operation requires at least two consecutive
write invocations on the same correct base
object.

•  A Write() requires two rounds!

12/15/08

7

Lower Bounds
•  Theorem:

– To implement a t-tolerant SWSR safe register
when the READ() does not invoke write
operations, a READ() operation requires at
least t+1 rounds of read invocations.

•  A Read() requires at least t+1 rounds!

Algorithm 1
•  Given:

– n MRSW FW-terminating regular registers
x1, x2, …, xn

–  t NR-Arbitrary failures.

•  Construct:
– MRSW FW-terminating regular register

Writer’s Algorithm
•  Writer maintains timestamp ts.
•  With every write, the timestamp is

incremented. There is a unique
timestamp associated with each value.

•  TSVal = [timestamp, value]

Writer’s Algorithm
•  Writer’s state:

– pw: TSVal (pre-write value)
– w: TSVal (write value)

•  Two phase algorithm:
1.  Write new TSVal to pw.
2.  Write new TSVal to w.

•  Each phase contacts at least (n-t)
registers, at least t+1 of which are
correct.

12/15/08

8

Writer’s Algorithm

Registers: x1, x2, …, xn

Perform_Write(pw, w)

 for 1 ≤ i ≤ n do
 if (enabled[i] and not pending[i]) then
 enabled[i] <-- false

 pending[i] <-- true

 INVOKE write(xi, <pw, w>)

 if (xi RESPONDED) then

 pending[i] <-- false

Writer’s Algorithm

Registers: x1, x2, …, xn

Write(v)

 ts <-- ts+1

 pw <-- [ts, v]

 for 1 ≤ i ≤ n do enabled[i] <-- true

 while |{i : not enabled[i]}| ≥ n-t
 Perform_Write(pw, w)

 w <-- [ts, v]

 for 1 ≤ i ≤ n do enabled[i] <-- true

 while |{i : not enabled[i]}| ≥ n-t
 Perform_Write(pw, w)

Reader’s Algorithm
•  Repeatedly read (n-t) registers.
•  A value is safe if it is read from at least

t+1 registers.
– At least one register must be correct.
– Thus, the value was written by some write

operation.

•  Return the safe value with the highest
timestamp.

Reader’s Algorithm

Perform_Read()

 for 1 ≤ i ≤ n do

 if (enabled[i] and not pending[i]) then

 enabled[i] <-- false

 pending[i] <-- true

 old[i] <-- false

 INVOKE read (xi)

 if (xi RESPONDED [a,b]) then

 pending[i] <-- false

 if not old[i] then

 pw[i] <-- a

 w[i] <-- b

 old[i] <-- false

12/15/08

9

Reader’s Algorithm

Read()

 for 1 ≤ i ≤ n do old[i] <-- true

 for 1 ≤ i ≤ n do pw[i] <-- NIL

 for 1 ≤ i ≤ n do w[i] <-- NIL

 Repeat

 for 1 ≤ i ≤ n do enabled[i] <-- true

 while |{i : not enabled[i]}| ≥ n-t
 Perform_Read()
 C <-- {c : safe(c) and highestValid(c) }

 until C ≠ {}

 return c.val : c in C

Reader’s Algorithm
•  safe (c) :

– There exists a set of registers P where:
• |P| ≥ t+1
• For every j in P, either:

– pw[j] = c
– w[j] = c

–  Implies that at least t+1 registers responded
with value c for either of [a, b].

Reader’s Algorithm
•  invalid (c) :

– There exists some c’ where either:
• c’.ts < c.ts
• c’.ts = c.ts and c.val ≠ c’.val

– There exists a set of registers P where:
• |P| ≥ 2t+1
• For every j in P, either:

– pw[j] = c’
– w[j] = c’

–  Implies that 2t+1 processes vote against c.

Reader’s Algorithm
•  highestValue (c) :

– For all c’ in pw[*] or w[*] where:
•  c’.ts ≥ c.ts
•  c’ ≠ c

– Then invalid(c’).

–  Implies that every larger timestamp is
invalid, i.e., is voted against by at least 2t+1
processes.

12/15/08

10

Regularity
•  Lemma 1: If c is safe, then there is some

Write(v) operation where v = c.val.

•  Proof: If c is safe, then it was returned by
at least t+1 registers, at most t of which
can be failed.

Regularity
•  Lemma 2: If some Write(v) operation

completes and writes c = [ts, v], then c is
not invalid.

•  Proof: After the Write(v) operation completes,
there are at most t registers such that xi ≠ c, i.e.,
at most t where xi has a TSVal with timestamp <
ts. And there are at most t faulty registers. Thus,
there are never 2t+1 votes against c.

Regularity
•  Theorem 3: The emulated register is regular.
•  Proof:

–  Consider a Read() operation that has concurrent write
operations.

–  Assume that it returns some value v, associated with
some TSVal c = [ts, v].

–  We know that c is safe, so by Lemma 1, some Write(v)
wrote [ts, v].

–  Let c’ = [ts’, v’] be the TSVal written by the Write(.)
operation immediately preceding the Read() operation.

Regularity
•  Proof (continued):

–  Goal: show that (ts ≥ ts’). Assume not.
–  Since the Write(v’) of c’ completed, there are at least

n-t registers with timestamp ≥ ts’.
–  The Read() operation accesses at least 2t+1

registers.
–  Thus there is some correct register that has

timestamp ≥ ts’ and is accessed by the Read()
operation.

–  Let xj be the correct process with the smallest TSVal
cj = [tsj, vj] with tsj ≥ ts’ that responds to the
Read().

12/15/08

11

Regularity
•  Proof (continued):

–  Since tsj ≥ ts’ > ts, we know that if cj is not invalid,
then c = [ts, v] cannot be highestValid. So assume
cj is invalid.

–  Thus, there are 2t+1 registers that “vote against” cj,
i.e., that have timestamps < tsj or have different
values and respond to the Read().

–  One of these registers xk must have been correct
and also one of the n-t contacted by Write(v’), so:
•  tsk ≤ tsj, since it “votes against” cj
•  tsk ≥ ts’, since it is contacted during Write(v’)

–  Since cj is the smallest ≥ ts’, tsk = tsj.

Regularity
•  Proof (continued):

–  Since xk “voted against” cj, but tsk=tsj, we can
conclude that vk ≠ vj.

–  But both registers xk and xj are correct.
–  But you can’t have two different values associated

with the same timestamp! Contradiction!

QED

FW-Terminating
•  Theorem 4: The algorithm guarantees

FW-termination.
•  Proof:

–  Easy to see that writes terminate, since at most t
faulty registers.

–  Easy to see that reads never get stuck waiting for
responses, since at most t faulty registers.

–  Hard part: show that in a FW execution, eventually
there is a c that is safe and highestValid.

FW-Terminating
•  Proof (continued):

–  Assume only a finite number of write operations.
–  Assume some Read() operation never terminates.
–  Let T be the point after which no new Write

operations are invoked and after all write operations
invoked in the low-level registers are complete.

–  Let T’ > T, be the point after which every correct
register has responded to at least one read
invocation after time T.

12/15/08

12

FW-Terminating
•  Proof (continued):

–  Let [ts, v] be the TSVal written in the very last
complete Write invocation in the execution.

–  Case 1 : no (incomplete) Write completes the pre-
write phase after [ts, v].

•  Then (ts,v) appears in at least t+1 registers w[*], and is
safe. And by Lemma 2, (ts, v) is not invalid.

•  And the incomplete write is invalid, since the 2t+1 correct
nodes “vote against” the incomplete write, since they each
have w[*] field ≤ ts.

•  Thus, (ts,v) is in C.

FW-Terminating
•  Proof (continued):

–  Let [ts, v] be the TSVal written in the very last
complete Write invocation in the execution.

–  Case 2 : some (incomplete) Write completes the pre-
write phase after [ts, v] with [ts’, v’].

•  Choose largest such (ts’, v’).
•  Then (ts’,v’) appears in at least t+1 registers pw[*], and is

safe. And by Lemma 2, (ts’, v’) is not invalid.
•  And any other larger write is invalid, since the 2t+1 correct

nodes “vote against” the larger write, since they each have
w[*] field ≤ ts’.

•  Thus, (ts’,v’) is in C.

QED

Algorithm 2
•  Given:

– n MRSW wait-free safe registers
– < t failures
–  t < n/3

•  Construct:
– Wait-free safe register
–  (Bounded number of iterations for each op.)

Algorithm 2
•  Write(v) :

– Same as Algorithm 1.
– Two phase operation:

1.  Increment timestamp ts := ts+1
2.  Prewrite pw = [ts, v] to n-t registers
3.  Write w = [ts, v] to n-t registers

12/15/08

13

Reader’s Algorithm
•  Repeatedly read registers:

–  If 2t+1 registers reject a value (i.e., return
some other value), then we continue.

– Otherwise, we choose the value with the
highest timestamp that is safe.

Reader’s Algorithm
•  Variables:

–  ReadW(v) : set of registers j that returned v for w[j]
–  ReadPW(v) : set of registers j that returned v for

pw[j]
–  prevReadW(v) : snapshot of ReadW at the beginning

of the current iteration.
–  Responded : set of processes that have responded

at some point during the Read() operation.
–  C : set of candidate values

Reader’s Algorithm

Perform_Read()

 for 1 ≤ i ≤ n do

 if (enabled[i] and not pending[i]) then

 enabled[i] <-- false

 pending[i] <-- true

 old[i] <-- false

 INVOKE read (xi)

 if (xi RESPONDED [a,b]) then

 pending[i] <-- false

 if not old[i] then

 ReadPW(a) <-- ReadPW(a) \/ {i}

 ReadW(b) <-- ReadW(b) \/ {j]

 old[i] <-- false

Reader’s Algorithm

Read() (Part 1)

 for 1 ≤ i ≤ n do old[i] <-- true

 for all v : ReadW(v), ReadPW(v) <-- NIL

 %% Round 1 %%
 for 1 ≤ i ≤ n do enabled[i] <-- true

 Repeat

 Perform_Read()

 until |{i : not (enabled[i] and pending[i])}| ≥ n-t

 C <-- {v : |Responded – ReadW(v)| < 2t+1}

12/15/08

14

Reader’s Algorithm

Read() (Part 2)

 %% Rounds 2, ... %%

 while C ≠ 0 and there is no c in C such that:

 highCand(c) and safe(c)

 do

 for 1 ≤ i ≤ n do enabled[i] <-- true

 prevReadW <-- ReadW

 Repeat Perform_Read()

 until |{i : not (enabled[i] and pending[i])}| ≥ n-t

 and for all c in C : either safe(c) or

 |Responded – prevReadW(c)| ≥ n-t

 C <-- {v in C : |Responded – ReadW(v)| < 2t+1}

Reader’s Algorithm

Read() (Part 3)

 %% Return value %%

 if C not empty then

 return c.val : highCand(c) and safe(c)

 else

 return v0

Reader’s Algorithm
•  Definitions:

– highCand(c) : if c = [ts, v], then every
candidate c’ in C has a timestamp that is ≤ ts

– safe(c) : at least t+1 registers have returned
a candidate value equal to c, or with a
timestamp > c.ts.

Note: timestamps larger than c.ts are okay, since
we only care that the register is safe, and a larger
timestamp may indicate a concurernt write.

Safety
•  Theorem: The register is safe.
•  Proof:

–  Let R be a read invocation, and assume that there are no
concurrent Write(.) ops.

–  Let [ts, v] be the TSVal written by the immediately preceding
write operation.

–  Throughout R :
1.  At least t+1 correct registers have [ts, v].
2.  At most 2t registers respond without [ts, v]: t that are

uninformed and t that are failed.
–  Thus, Responded – ReadW < 2t+1, so [ts, v] in C, and never

excluded later.

12/15/08

15

Safety
•  Theorem: The register is safe.
•  Proof:

–  Need to show that no c’=[ts’, v’] can be highCand and safe.
–  Assume c’ is highCand, i.e., ts’ > ts. There are at most t

registers that can returns c’, or any timestamp >ts, so c’ is not
safe.

–  So, we conclude that the value returned is v.

Wait-freedom
•  Theorem: Algorithm 2 is wait-free.
•  Proof:

–  Clearly, every write operation completes.
–  Consider a read operation R.
–  We show:

•  The set C is updated at most t+1 times.
•  Each time C is updated, each candidate c gains at least one

supporter.
•  Thus, at the end, either C is empty or each candidate has t

+1 supporters and the algorithm terminates.

Wait-freedom
•  Proof (continued):

–  First, it is clear that R is not blocked by waiting for n-t
responses.

–  It is also not blocked by waiting for:
•  for all c in C : safe(c) or |Responded – prevReadW(c)| ≥ n-t
•  Fix a c.
•  We know that prevReadW(c) is not empty.
•  If at least one j in prevReadW(c) is correct, then we know

that c was pre-written to t+1 correct registers. These
registers hold timestamps that are strictly increasing, so
eventually c is safe.

•  If all the registers in prevReadW(c) are faulty, then n-t
correct processes did are not in prevReadW(c). Eventually,
every correct process responds, so there are n-t processes
in Respnded and not in prevReadW(c).

Wait-freedom
•  Proof (continued):

–  Now consider each iteration of the while loop:
while C ≠ 0 and there is no c in C such that highCand(c) and safe(c)

–  If C is empty, then done.
–  Fix some c in C.
–  At the end of the Perform_Read loop, either safe(c) or at least n-t

new Respondents not in prevReadW are found.
–  If none of the n-t new respondents have candidate c, then c is

removed from C (since n-t voted against it).
–  Thus, at least 1 new respondents returns c, and thus ReadW is bigger

than prevReadW.
–  After t+1 iterations, either c is removed from C, or c is safe.
–  Thus, highCand(c) is safe.

12/15/08

16

Summary
•  Two Algorithms:

–  Implement SWMR regular register
guaranteeing FW-termination.

–  Implement SWMR safe register guaranteeing
wait-freedom.

– Both rely on carefully collecting enough
information to verify that the failures don’t
compromise the data.

