
STiDC’08: Exercise 6

January 16, 2009

Write an algorithm that implements a fetch-and-increment object using atomic
registers and compare-and-swap objects.

Reminder: Fetch-and-increment is a shared object that maintains a single
variable c, initialized to 0, and provides a single operation fetch&inc with the
following sequential specification:

operation fetch&inc()
c’ := c
c := c + 1
return c’

end

A compare-and-swap object is a shared object that maintains a single variable
v, initialized to ⊥, and provides a single operation CAS with the following
sequential specification:

operation CAS(oldVal, newVal)
v’ := v
if v = oldVal then v := newVal
return v’

end

1



Solution. Here is an example algorithm that implements a fetch-and-increment
object using: (1) a single compare-and-swap object C (initialized to 〈−1, . . . ,−1〉),
and (2) array R of N atomic registers (each initialized to−2). The local variable
(array) lasti is initialized to 〈−1, . . . ,−1〉 at every process pi.

upon fetch&inc()i do
R[i]← lasti[i]
repeat

for k← 1 to N do r[k]← R[k]
m← maxk(r[k]) + 1
new← lasti
for k← 1 to N do

if r[k] = lasti[k] then
new[k]← m
m← m + 1

v← C.CAS(lasti, new)
if v = lasti then lasti ← new
else lasti ← v

until lasti[i] > R[i]
return lasti[i]

2


